Marine Science I

Course No. 2002500

Bureau of Instructional Support and Community Services Division of Public Schools and Community Education Florida Department of Education

2001

This product was developed by Leon County Schools, Exceptional Student Education Department, through the Curriculum Improvement Project, funded by the State of Florida, Department of Education, Division of Public Schools and Community Education, Bureau of Instructional Support and Community Services, through federal assistance under the Individuals with Disabilities Education Act (IDEA), Part B.

> Copyright State of Florida Department of State 2001

Authorization for reproduction is hereby granted to the State System of Public Education as defined in Section 228.041(1), Florida Statutes. No authorization is granted for distribution or reproduction outside the State System of Public Education without prior approval in writing.

Marine Science I

Course No. 2002500

developed and edited by Angela Breeza-Pierce Sue Fresen

from Exploring Oceanography Revised Edition

graphics by Rachel McAllister

Curriculum Improvement Project IDEA, Part B, Special Project

http://www.leon.k12.fl.us/public/pass/

Curriculum Improvement Project

Sue Fresen, Project Manager

Leon County Exceptional Student Education (ESE)

Ward Spisso, Director of Exceptional Education and Student Services Diane Johnson, Director of the Florida Diagnostic and Learning Resources System (FDLRS)/Miccosukee Associate Center

Superintendent of Leon County Schools

William J. Montford

School Board of Leon County

Fred Varn, Chair Joy Bowen Dee Crumpler J. Scott Dailey Maggie Lewis

Table of Contents

Acknowledgments	xi
Unit 1: The Hydrosphere	1
Unit Focus	
Vocabulary	
Introduction: The Hydrosphere—The Waters of Earth	5
The Science of Oceanography	0
Why Study the Ocean?	<i>1</i> 9
The Ocean as a Resource	
Summary	
Practices and Lab Activities	
Unit 2: Measuring the Ocean	31
Unit Focus	
Vocabulary	33
Introduction: Measuring the Ocean—Collecting Information	
The Ocean's Chemical and Physical Features and How They	
Are Measured	37
Sampling	
Summary	
Practices and Lab Activities	
Unit 3: The Nature of Seawater	57
Unit Focus	57
Vocabulary	59
Introduction: The Nature of Seawater—Physical and Chemical Properties .	
Seawater: So Much to See, So Little to Drink	62
Salinity: Water and Salt	
Temperatures of the Ocean: From Freezing to Warm	
Light in Ocean Waters	66
Dissolved Gases in Seawater	
CO ₂ : Buffering Seawater	67
Desalination: A New Source of Freshwater	
Summary	68
Practices and Lab Activities	

Unit 4: Waves	
Unit Focus	
Vocabulary	
Introduction: Waves—Unpredictable Energy	
Types of Breaking Waves	
Capillary Waves	
Tsunami: The Ocean's Most Powerful Wave	
Waves and Erosion: Wearing Away Shorelines	
Summary	
Practices and Lab Activities	104
Unit 5: Tides	
Unit Focus	
Vocabulary	
Introduction: Tides—The Rise and Fall of Ocean Water	
Causes of Tides: The Moon's Gravity	
Types of Tides	
Summary	
Practices and Lab Activities	
Unit 6: Ocean Currents	
Unit Focus	
Vocabulary	
Introduction: Ocean Currents—Moving Streams of Water	
The Ocean's Surface Currents: Blown by the Wind,	
Moved by Temperatures	
Florida's Currents: The Gulf Stream	
Turbidity Currents: A Slide in the Ocean	
Making Use of the Currents	
Beach Currents: A Possible Danger to the Ocean Swimmer	
Summary	
Practices and Lab Activities	
Unit 7: The Ocean Floor	
Unit Focus	
Vocabulary	
Introduction: The Ocean Floor—Features Underwater	
Abyssal Plains: Earth's Largest Plains	
Seamounts and Guyots: Underwater Mountains	
Mid-Ocean Ridges: Underwater Mountain Ranges	
Summary	
Practices and Lab Activities	

Unit 8: Ocean Sediments	179
Unit Focus	
Vocabulary	181
Introduction: Ocean Sediments—Blanketing the Ocean Floor	183
Terrigenous Sediment: Building and Covering the Shores and Beaches	
Pelagic Sediments: The Ocean-Floor Blanket	
Authigenic Sediments: The Bed of Minerals	
Summary	
Practices and Lab Activities	
Unit 9: Food Chains and Food Webs	199
Unit Focus	199
Vocabulary	201
Introduction: Food Chains and Food Webs—Energy Production	
and Transfer	205
The Food Chain	207
Hierarchy in Food Chains: Who Eats Whom	208
The Ocean's Plants: Providing for the Sea's Carnivores and Herbivores	
Food Relationships in the Ocean	212
Summary	213
Practices	214
Unit 10: Ocean Zones	225
Unit Focus	225
Vocabulary	227
Introduction: Ocean Zones—A Range of Environments	231
The Marine Biome	231
Pelagic Environment: The Largest Region of the Marine World	232
Benthic Environment	236
Sandy Beach Environment	238
The Rocky Coast	239
Summary	240
Practices and Lab Activities	241
Unit 11: Near-Shore Ecosystems	255
Unit Focus	255
Vocabulary	257
Introduction: Near-Shore Ecosystems—Wetlands and Coral Reefs	259
Wetlands: A Zone Between Land and Sea	259
Coral Reefs: The Exotic Community	267
Summary	270
Practices and Lab Activities	

Unit 12: Plankton	
Unit Focus	
Vocabulary	
Introduction: Plankton—Small but Vital	
Phytoplankton	
Zooplankton	
Collecting Plankton	
Summary	
Practices and Lab Activities	
Unit 13: Marine Plants	305
Unit Focus	
Vocabulary	
Introduction: Marine Plants—The Producers	
Plants: Complex Producers Rooted to Land	
Marine Algae: Different and Colorful	
Summary	
Practices and Lab Activities	
Unit 14 Classifying Marine Animals	201
Unit 14: Classifying Marine Animals	
Unit Focus	
Vocabulary	
Introduction: Classifying Marine Animals—Primitive to Complex	
Invertebrates: Well Adapted to Their Habitats	
Porifera: Phylum of the Ancient and Primitive	
Cnidaria: Stingers in the Ocean Phyla of Worms	
Mollusks: Soft Bodies Protected by Shells	
Arthropods: From Lobsters to Spiders	
Echinoderms	
Chordates	
Summary	
Practices and Lab Activities	
Unit 15. Fish Cold blood of Surjeyments	240
Unit 15: Fish—Cold-blooded Swimmers	
Unit Focus	
Vocabulary	
Introduction: Fish—Cold-Blooded Swimmers	
Agnatha: The Jawless Lamprey and Hagfish	
Cartilaginous Fish: Sharks and Rays	
Bony Fish: The Ocean's Most Numerous Fish	
Summary Practices and Lab Activities	
1 factices and lad activities	

Unit 16: Marine Mammals	373
Unit Focus	373
Vocabulary	375
Introduction: Marine Mammals—Back to the Sea	377
Polar Bears: Living on the Ice	378
Sea Otters: Tool Users	
Bradycardia: Surviving Long Periods without Oxygen	379
Manatees: The Gentle Giant	
Seals and Sea Lions: Escaping Extinction	382
Whales: Baleen and Toothed	383
Dolphins: The Gentle and Social Creatures of the Sea	384
Summary	
Practices and Lab Activities	387
Unit 17: Marine Pollution	102
Unit Focus	
Vocabulary Introduction: Marine Pollution—The Hazards of Producing Waste	
Marine Pollution Generated by Our Homes, Industry, and Agriculture Effects of Marine Pollution	
Human Health: Polluting Ourselves	
The Health of Marine Life: Damaged by Human Hands	
Thermal Pollution: Changing Temperatures	
Oil Pollution: Catastrophes in the Ocean	
Cleanup Efforts	
Prevention: Our Only Cure	
Summary	
Practices and Lab Activities	
Tructices and Eucorrectivities	110
Unit 18: Marine Resources	431
Unit Focus	433
Vocabulary	433
Introduction: Marine Resources—Balancing Use and Overuse	435
Nonrenewable Resources: The Ocean's Natural Resources	436
Renewable Resources: Biological (Living) Resources	437
Renewable Resources: Physical (Nonliving) Resources	
Summary	
Practices	441
Appendices	445
Appendix A: Periodic Table	
Appendix B: Index	
Appendix C: Reference	

Acknowledgments

The staff of the Curriculum Improvement Project wishes to express appreciation to the content revisor and reviewers for their assistance in the development of *Marine Science I* from *Exploring Oceanography's* original material by content, instructional, and graphic design specialists from Dade and Leon county school districts.

Content Revisor

Copy Editor

Angela Breeza-Pierce Science Teacher Department Chair Chiles High School Tallahassee, FL Deborah Shepard National Board for Professionals Teaching Standards (NBPTS) Certified English Teacher Lincoln High School Tallahassee, FL

Review Team

Rich Bray Biologist Florida Department of Environmental Protection Author and Publisher www.biobooks.org Tallahassee, FL

Dr. Howard J. Fischer Professor of Geology and Oceanography Tallahassee Community College Tallahassee, FL

Dr. Susan Mattson Science Teacher Leon High School Tallahassee, FL

Gloria S. McIntosh Science Teacher Department Chair Marine Science Magnet Program South Broward High School Hollywood, FL George Shipp Operations and Management Consultant Cedar Key Field Lab Florida and Wildlife Conservation Commission Cedar Key, FL

Doug VanEtten Developmental Teacher/Science Schwettman Education Center New Port Richey, FL

Lawrence A. Weiner Chief Operating Officer Integrated Environmental Solutions Corporation St. Petersburg, FL

Margaret Wood Exceptional Student Education Teacher Leon High School Tallahassee, FL

Production Staff

Sue Fresen, Project Manager Rachel McAllister, Graphics Design Specialist Tallahassee, FL

Unit 1: The Hydrosphere

Unit Focus

This unit describes the waters of the Earth and the science of oceanography. Students will learn the importance of the oceans and how oceans are utilized as a resource.

Student Goals

- 1. Define oceanography.
- 2. State the four branches of oceanography and describe each branch.
- 3. State the importance of the world's oceans.
- 4. Give examples of how humans use the ocean as a resource.

Vocabulary

Study the vocabulary words and definitions below.

biological oceanographers	. scientists who study the distribution, natural history, and environment of marine life
chemical oceanographers	. scientists who study the chemical composition of seawater and the chemical reactions that occur in seawater
drilling platforms	. ships or stationary structures designed to obtain sediment, rock samples, oil, or gas from the deep-ocean floor
geological oceanographers	. scientists who study ocean sediments and the topography of the ocean floor
hydrosphere	. waters of the Earth
ocean	. the vast body of saltwater that covers almost three-fourths of Earth's surface
oceanographers	. scientists who study the ocean
oceanography	. the study of Earth's oceans
physical oceanographers	. scientists who study changes in seawater and the motion of seawater
seas	. smaller bodies of saltwater which are frequently enclosed by land

thermal energy	. an energy source obtained from the ocean's direct absorption of sunlight and transformed to heat
tidal power	. an energy source obtained from the ocean's tides
topography	. detailed charting of the features of an area; heights, depth, and shapes of the surface of an area
underwater research vehicle	. submersible or submarine specially equipped to explore and study the deep areas of the ocean

Introduction: The Hydrosphere—The Waters of Earth

Begin your study of Earth's **hydrosphere**, or its waters, from a point somewhere above Earth. At first glance you notice how blue the surface of Earth looks. The blue you see is Earth's **ocean**, which covers more than 70 percent, or nearly three-fourths, of our planet. As your eyes sharpen their focus, you'll begin to see dark patches that look like islands within the vast expanse of blue. Those *islands* are the continents, or large land masses, upon which we live.

photograph of Earth

globe of Earth showing the oceans and continents

If you look closely enough, you'll notice that the ocean is not divided. In other words, Earth is covered by a single continuous ocean. However, using the continents as boundaries, we've sectioned this one great ocean into five smaller oceans: the Pacific, Atlantic, Indian, Arctic, and Antarctic oceans. The Antarctic Ocean or Southern Ocean is a smaller ocean that some scientists and geographers dispute as actually being an ocean. There are always difficulties when humans try to determine boundaries on something that has no boundaries. Smaller bodies

of saltwater known as **seas** make up another part of this liquid surface of the Earth. Seas are often partially, or even totally, enclosed by land. For example, the Mediterranean, Caribbean, Baltic, Arabian, Red, and Black seas are separated from major oceans by projecting strips of land.

These oceans and seas that surround us have always interested us. We know that as far back as 3,500 years ago, sailors and navigators were exploring and charting the ocean. Today, many scientists continue to study and expand our understanding of the ocean and the organisms that live there.

In addition to our curiosity, other reasons and needs have prompted us to investigate the ocean. We've used the ocean's resources—from fish to water power—to support our existence. We've used the ocean to travel from one landlocked region to another. And we've used the ocean for the pleasure we get from sailing across its waves and swimming amongst its miraculous variety of marine life.

	Oceans					
Pacific OceanDescription: The world's largest and deepest ocean, covering one third Earth's surface.Area: 64,000,000 square miles or 166, 00,000 square kilometers Average depth: 14,050 feet or 4,280 meters Volume: 173,625,000 cubic mile or 723,700,000 cubic kilometers Maximum depth: Marianas Trench - 35,798 feet or 10,911 meters						
Atlantic Ocean	Description: The second largest ocean and the most heavily traveled. The Atlantic Ocean is about one half the area of the Pacific Ocean.Area: 3,166,000 square miles or 82,000,000 square kilometersAverage depth: 10,930 feet or 3,330 metersVolume: 77,235,000 cubic miles or 321,930,000 cubic kilometersMaximum depth: South Sandwich Trench - 30,000 feet or 9,144 meters					
Indian Ocean						
Arctic Ocean	 Description: The smallest of the worlds's oceans. The Arctic Ocean is slightly more than one sixth the area of the Indian Ocean and it has a basin that is basically landlocked. Area: 4,700,000 square miles or 12,173,000 square kilometers Average depth: 3,250 feet or 990 meters Maximum depth: Pole Abyssal Plain - 15,091 feet or 4,600 meters 					
Antarctic Ocean	 Description: Sometimes referred to as the Southern Ocean. Scientists and geographers dispute the area where three main oceans meet (the Pacific, Atlantic, and the Indian) at Antarctica (the continent) as an actual ocean. The Antarctic Ocean can be taken to include all oceanic areas lying south of the Antarctic Convergence, typically around latitude 55 degrees south. Area: 13,513,000 square miles or 35,000,000 square kilometers Area that is sea ice: 8,100,000 square miles or 35,000,000 square kilometers Area that is permanently frozen: 1,540,000 square miles or 4,000,000 square kilometers 					

However, understanding the ocean poses many difficulties. Because we're land animals, we've needed to develop special equipment to explore and measure the ocean. Today's scientists use technological equipment such as **drilling platforms** and **underwater research vehicles**. Drilling platforms are ships or stationary structures designed to obtain sediment, rock samples, oil, or gas from the deep-ocean floor. The *Resolution* is a well known drilling ship. The *Alvin* and *Argo* are two examples of underwater research vehicles. The *Alvin* is a tiny submarine designed to withstand pressure changes at more than 4,000 meters. The *Alvin* is equipped with robotic arms to take bottom samples and to collect marine specimens. Television and photography equipment are also on board the *Alvin*. The *Argo* is a sled-like submersible geared with camera, lights, and radar.

Nearly all of the sciences used to study the land are needed to study the oceans. Scientists have drawn on different sciences, from biology to zoology, from chemistry to physics, to probe the mysteries beneath the ocean's surface. **Oceanography** is the study of the Earth's oceans and involves all the other sciences.

The Science of Oceanography

The study of the ocean truly became a science in 1855 when Matthew Fontaine Maury published his research on the physical features of the ocean. In 1872 the British navy launched the *H.M.S. Challenger*, a warship remodeled to house a laboratory, to study the ocean in greater detail. Pioneering scientists on board performed experiments to begin to learn more about the ocean. They collected and recorded information on the

Scientist who studied the ocean became known as oceanographers.

ocean's depth, water temperature, water and sediment samples, currents, and plant and animal species.

In the years following, scientists who studied the ocean became known as **oceanographers**. There were so many different features of the ocean to study that oceanographers began grouping themselves according to their interests. Consequently, four different kinds of oceanographers developed.

Geological oceanographers study the ocean's sediments and the **topography** of the ocean floor. These scientists analyze the topography and rock movements under the ocean's surface in order to answer the following questions: How were the oceans formed? What is their geological history, and what does movement on and below the ocean's floor suggest about future changes in the ocean?

Chemical oceanographers measure the chemical composition of seawater and the chemical reactions that occur in seawater. Because the ocean covers such a large portion of the Earth's surface, chemical interactions between ocean water and the atmosphere have a big effect on the Earth's climate. For example, carbon dioxide is dissolved in the water. But how

much carbon dioxide dissolves in the water is directly related to the chemical make-up of the water. Thus, the chemical make-up of water determines the amount of carbon dioxide in the air, and the amount of

carbon dioxide in the air affects how many clouds form in the atmosphere, how much rain falls, and, consequently, temperature and weather patterns.

Biological oceanographers

chart marine life in the ocean. These scientists spend many hours observing, collecting, tagging, and identifying specimens of plant and animal marine life. They work to understand the role of marine life in the ocean and people's impact on marine life.

Biological oceanographers spend many hours observing, collecting, tagging, and identifying specimens of plant and animal marine life.

Physical oceanographers focus on the currents and motions of the ocean. These oceanographers attempt to find answers to the following questions: Where do currents originate? How do liquids that vary in density, temperature, or momentum interact?

Some oceanographers search the seas for potential medicines to cure diseases, while others study ways to predict and even slow the development of hurricanes and other adverse weather conditions. Some

Some oceanographers study ways to predict and even slow the development of hurricanes and other adverse weather conditions.

oceanographers are working to harness the power of the ocean for use as energy, while others study how to limit our pollution of the seas and create a healthy relationship between human life and marine life.

What a particular oceanographer wants to understand will determine his or her work site. Oceanographers may work on a research ship, in a laboratory, or on an offshore oil rig, to name just a few of their settings.

An oceanographer may be employed by a university, the government, or in one of the various industries. As

people in science, commerce, and industry have begun to understand what an essential role the ocean plays in our lives and how rich it is in resources, more and more career opportunities have opened up in the field of oceanography.

Why Study the Ocean?

When we study the ocean, we're really increasing our knowledge of how Earth supports life.

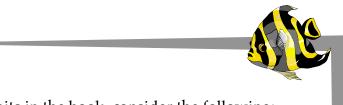
Much of our life on land is dependent on the ocean. If the ocean suddenly dried up or its features and composition were radically changed, life on Earth as we know it would not survive. So when we study the ocean, we're really increasing our knowledge of how Earth supports life.

Climate and Weather

When you feel rain, you probably look to the clouds overhead as its source. But the ocean plays an important part in precipitation and other kinds of weather and climate. The rain you feel on your face may have evaporated

from the surface of the ocean as it was heated by the sun. The evaporated water rises until it condenses and falls to the Earth as rain, snow, hail, or sleet.

Our weather on land is also affected by the temperature of the nearby ocean. Winds carry warm or cool air from the ocean's surface onto land. This air in turn alters the temperature on land. Sometimes the solar energy radiating over tropical waters is so powerful that it *destabilizes*, or changes the design and condition of, large masses of air, creating huge rotating weather systems of wind and rain known as *hurricanes*. Hurricanes can occur in the North Atlantic Ocean, eastern North Pacific Ocean, Caribbean Sea, and Gulf of Mexico. Such storms in the western Pacific Ocean are called *typhoons*. By studying the Earth's oceans, we will be better equipped to predict water movement, heating, cooling, and evaporative processes that impact weather systems. A better understanding of the oceans will enable oceanographers and meteorologists to forecast dangerous storms such as tornadoes and hurricanes.


The Ocean as a Resource

Many of us in Florida are fortunate enough to enjoy a variety of fresh seafood. Looking across the ocean or the gulf as far as the horizon, we may think that these waters are a limitless frontier and that sea creatures are easy to find and eternally plentiful. But such is not the case. *Aquaculturists* help us find seafood, predict its availability, and help insure the continued survival of the delicacies we enjoy from the ocean.

Did you know that the ocean is also a source for many medicines and health products? Fish and marine plants are already used to produce certain drugs, and oceanographers believe many more medicines can be harvested from the ocean. The ocean already supplies us with many chemical resources such as sodium chloride (NaCl), or common table salt, magnesium, and bromine. In the future, scientists may even discover a practical way to extract gold and uranium from the ocean.

As we increase our need for energy—forms of power to do work scientists have looked more and more to the ocean as a source. For example, oceanographers now collect **thermal energy**, or heat, from the ocean's absorption of sunlight. This thermal energy, as well as the force of ocean currents, waves, and tides, can be used to push turbine blades that in turn produce electricity. Tides flowing in and out of channels and bays produce energy collected in power stations. This type of energy is called **tidal power**. Thermal energy, wave energy, current energy, and tidal power are the most abundant forms of energy available from the ocean. Unlike fossil fuel, there is an endless supply of ocean currents, waves, and tides for us to tap in the future.

The oceans are very important to people and all life forms on Earth. Much of our food, water, and other resources are taken directly or indirectly from the oceans. By understanding the chemical and physical aspects of the ocean as well as the organisms that live there, we can learn to properly manage marine resources.

As you continue reading the units in the book, consider the following: Regardless of where you live, whether you can see the ocean or not, the ocean plays an essential role in your survival.

Summary

Nearly three-fourths of our planet is covered by oceans: the Pacific, Atlantic, Indian, Arctic, and Antarctic. Different features of the ocean are studied by four types of oceanographers: geological, chemical, biological, and physical. The ocean is a source for food, water, medicines, energy, recreation, and transportation. Our life on Earth is dependent on the ocean and its well being.

Use the list below to write the correct term for each definition on the line provided.

	animals drilling platforms hydrosphere magnesium	oceans oceanographers oceanography plants	<i>Resolution</i> sodium chloride thermal				
1.	is the study of the Earth's oceans.						
2.	The	is divi	ded by the Earth's				
	continents into five la	arge oceans.					
3.	The	is a we	ell known drilling ship.				
4.	Medicines already harvested from the ocean come from marine						
		and					
5.		and					
	are two of the many o	chemical resources ga	athered from the oceans.				
6.	The energy source obtained from the ocean through the ocean's						
	direct absorption of sunlight is called						
	energy.						
7.		are ships o	r stationary structures				
			ples, oil, or gas from the				
	deep-ocean floor.						
8.	The	cover a	about 70 percent of the				
	Earth's surface.						
9.	Scientists who study	the ocean are known	as				

Complete the following.

•	Four types of oceanography have developed over the last hundred				
	or so years. They are				
1	We have divided Earth's one great ocean into five smaller oceans,				
•	which are called the				
	Three of Forth's many large sees are the				
•					
•	The <i>H.M.S. Challenger</i> was important to oceanography because				
•	The oceans are important to our environment and well being				
	because				

Circle the letter of the correct answer.

- 1. A(n) ______ studies the oceans of the Earth.
 - a. scientist
 - b. chemist
 - c. oceanographer
 - d. astrologer

2. _____ oceanography is the study of the chemical composition of seawater and the reactions that occur in seawater.

- a. Chemical
- b. Biological
- c. Physical
- d. Geological

3. ______ is the study of the Earth's oceans.

- a. Meteorology
- b. Marine biology
- c. Oceanography
- d. Earth science
- 4. _____, or NaCl, is commonly known as *table salt*.
 - a. Sodium pentothal
 - b. Sodium chloride
 - c. Carbon tetrachloride
 - d. Sodium bicarbonate
- 5. Smaller bodies of saltwater frequently enclosed by land are
 - a. lakes
 - b. ponds
 - c. oceans
 - d. seas
- 6. ______ energy is a form of power which can be obtained from the ocean's absorption of sunlight.
 - a. Thermal
 - b. Tidal
 - c. Current
 - d. Wave

- 7. _____ oceanography is the study of the Earth below the ocean, including the rocks and rock movements.
 - a. Chemical
 - b. Biological
 - c. Physical
 - d. Geological
- 8. _____ oceanographers are interested in the ocean's gases and the specific make-up of seawater.
 - a. Chemical
 - b. Biological
 - c. Physical
 - d. Geological
- 9. _____ oceanographers study and chart marine life.
 - a. Chemical
 - b. Biological
 - c. Physical
 - d. Geological

10. The ocean plays an important part in Earth's ______.

- a. precipitation
- b. weather
- c. climate
- d. all of the above
- 11. Scientists who focus on the currents and motion of the ocean are ______ oceanographers.
 - a. chemical
 - b. biological
 - c. physical
 - d. geological

12. The ocean is an important resource for ______.

- a. food and medicine
- b. transportation
- c. recreation
- d. all of the above

Use the facts below to complete the oceanography word problems on the following page. Round answers to nearest whole number.

- deepest place in the ocean is the Marianas Trench*: 35,798 feet
- highest place on land is Mount Everest: 29,029 feet
- average height of dry land: 2,854 feet
- average depth of the ocean: 12,237 feet
- biggest animals—

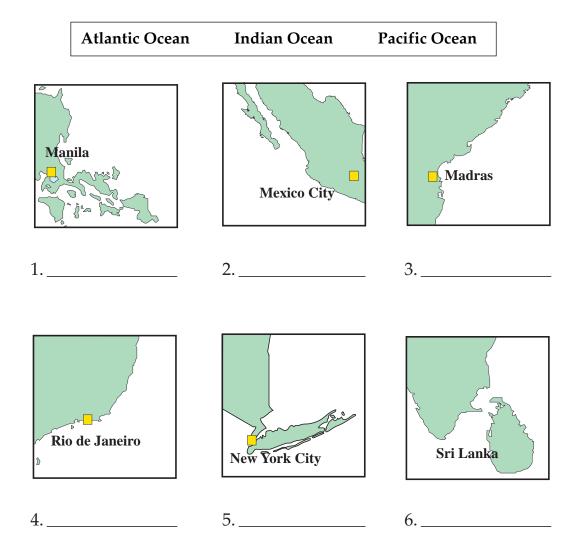
blue whale: 90 feet long giant squid: 57 feet long giraffe: 19 feet tall elephant: 10.5 feet tall tallest plants giant Sequoia redwood tree: 360 feet giant kelp: 330 feet tallest buildings— Sears Tower in Chicago: 1,559 feet

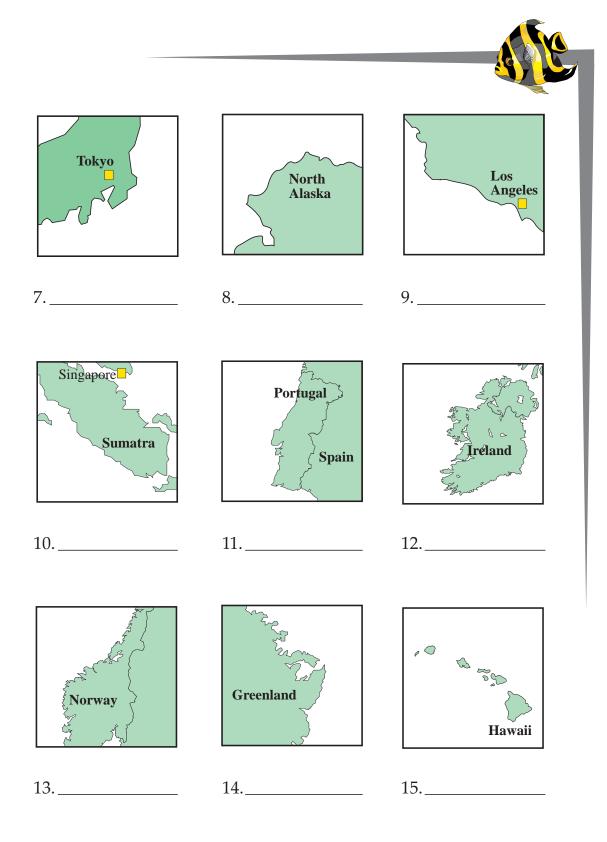
Empire State Building in New York City: 1,473 feet

average human: 5.5 feet

- deepest dive from the surface by a human without SCUBA (selfcontained underwater breathing apparatus) gear: 417 feet
- deepest dive from the surface by a marine animal, the sperm whale: 7,381 feet

* trench - long, narrow crack in the ocean floor; the deepest part of the ocean




Remember: Round answers to nearest whole number.

- How many humans of average height could fit end to end to make a tower going from the surface to the average depth of the ocean?
- How many humans of average height would it take to make a tower of the average height of dry land? ______
- How many Empire State Buildings could fit end to end in the Marianas Trench?
- 4. How many humans of average height could fit end to end to equal the length of a giant squid?
- How many humans of average height could fit end to end to equal the length of a blue whale?
- 6. How tall is Mt. Everest in giraffes rather than feet? _____
- 7. How tall is Mt. Everest in blue whales? _____
- 8. Could Mt. Everest fit into the Marianas Trench?
- 9. How many elephants would have to stand on top of each other to reach the height of a giant kelp seaweed? ______
- 10. How much further would the deepest human diver without SCUBA gear have to swim to get to the average ocean bottom? _____
- 11. How much further would the deepest diving sperm whale have to go to get to the average ocean bottom? ______

Use a globe or world map to assist you in locating the places shown. Then determine the **ocean which borders the land mass**. Write the correct name of the **ocean** on the line below each map.

Lab Activity 1: Mapping the World's Oceans

Investigate:

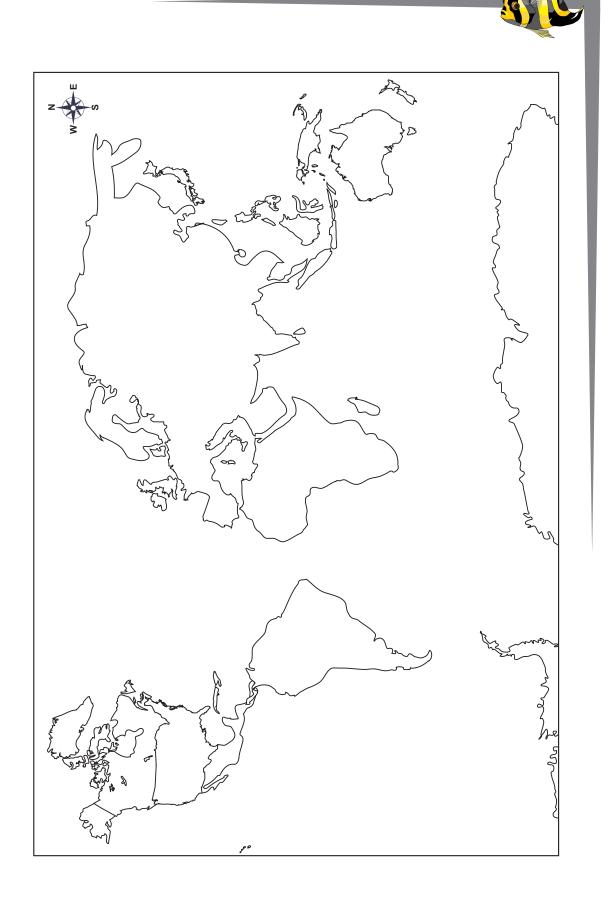
- Use a map to locate oceans and continents.
- Locate points on a map using latitude* and longitude**.
- Relate locations featured on map to their oceanic significance.

Materials:

- colored pencils
- 2 copies of blank world map
- globe, atlas, or map (to be used by several students)

* latitude - measure of a distance north and south from the equator
** longitude - measure of a distance east and west from the prime meridian

Procedure:

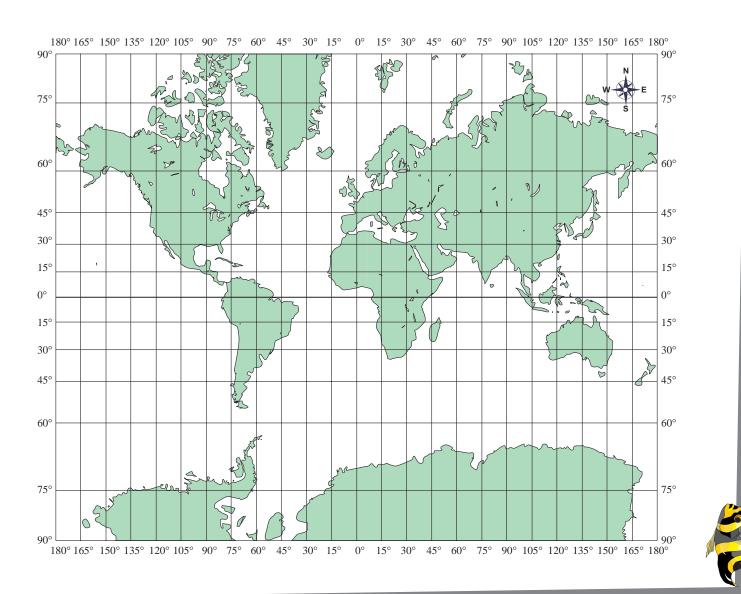

1. Use the map on the next page to label the following bodies of water. Be sure to label each body of water with its correct number and color.

Oceans	Seas	Gulfs	
Blue	Green	<i>Red</i>	
 Atlantic Pacific Indian Arctic Antarctic 	 6 Mediterranean 7 China 8 Arabian 9 Japan 10 Red 11 North 12 Black 	13 Gulf of Mexico14 Gulf of California	

2. Now label the following continents and islands. Be sure to label each continent and island with a black pencil.

Continents		Islands			
	Africa Eurasia Australia	22	Greenland Philippines Madagascar		

3. On a separate piece of paper, list the major rivers and tributaries found near your home. Be sure to indicate how they lead to the ocean.



4. Use the second blank map and title it "Latitude and Longitude Coordinates for Ocean Landmarks." Plot and label the following latitude and longitude coordinates. The following locations represent land areas that have a tie to the oceans and others represent actual ocean "seamarks." (degrees = °)

Location	Latitude	Longitude	Ocean Significance
Bering Sea	58°N	160°W	king crab fishing
Chesapeake Bay	38°N	77°W	nursery grounds for the Atlantic
Denmark Strait	68°N	25°W	underwater marine waterfall
Maine	43°N	70°W	lobster fishing
Marianas Trench	11°N	142°W	deepest point in the ocean at 6.8 miles
Mauna Kea	19°N	155°W	highest mountain on Earth rises 33,465 feet from sea
Newfoundland	53°N	56°W	cod declines
New York/ New Jersey beaches	41°N	73°W	medical wastes
Alaskian coast	48°N	161°W	60,000 Nike shoes spilled from a cargo ship May 1990
Peru	12°S	77°W	El Nino
Scandinavia	63°N	14°E	cod liver oil

Use the list below and your completed maps on the previous pages to complete the following statements. **One or more terms will be used more than once.**

Arabian Sea	Gulf of California	Mediterranean Sea
Arctic Ocean	Gulf of Mexico	Pacific Ocean
Atlantic Ocean	Indian Ocean	Philippine Islands

1. The ocean that borders the west coast of North America and South

America is the ______.

- 2. The ocean that touches the Indian Coast is the
- 3. The ocean located at the North Pole is the

4. The ocean that separates South America from Africa is the

5. The ocean that separates Asia from North America is the

- 6. The ocean that touches the east coast of North America and the west coast of Europe is the _______.
- 7. The ocean that touches the east coast of Florida is the

8. The body of water that touches the west coast of Florida is the ______.

- 9. The group of islands located in the western Pacific Ocean and east of the China Sea is the ______.
- 10. The sea located off the coasts of France, Italy, and Spain is the ______.
- 11. The gulf that touches the west coast of Mexico is the ______.
- 12. The sea between eastern Africa and western India is the ______.

Lab Activity 2: Postcards from the Oceans

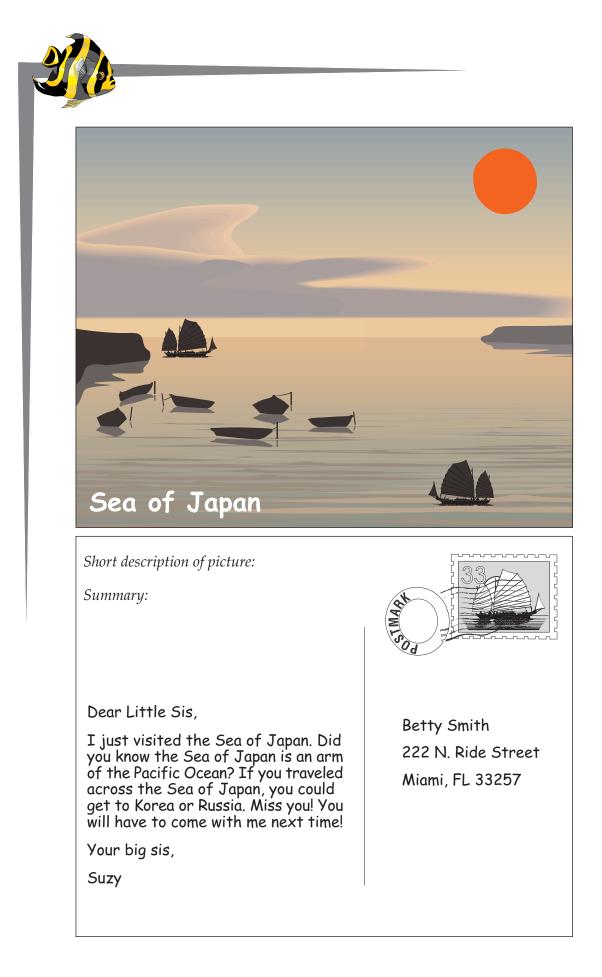
Investigate:

• Create a postcard that illustrates and describes one of the world's oceans, gulfs, or seas that you may study in class.

Materials:

- colored pencils or crayon
- paper or file folder cut to 8"x10"
- reference books or Internet access to research different oceans and seas
- magazine pictures or Internet pictures of oceans and seas

Procedure:


1. Select from the following list of **Bodies of Water** for the location or topic of your postcard. Check with your teacher to see that no other student selected the same body of water.

	Bodies of	of Water	
Oceans	Se	as	Gulfs
Antarctic Ocean Arctic Ocean Indian Ocean North Atlantic Ocean North Pacific Ocean South Atlantic Ocean South Pacific Ocean	Adriatic Sea Aegean Sea ArabianSea Baltic Sea Barents Sea Beaufort Sea Bering Sea Black Sea Caribbean Sea Caspian Sea Coral Sea East China Sea Ionian Sea	Kara Sea McKinley Sea Mediterranean Sea North Sea Norwegian Sea Red Sea Sea of Japan Sea of Okhotsk South China Sea Tasman Sea Tyrrenian Sea Yellow Sea	Gulf of Aden Gulf of Alaska Gulf of Finland Gulf of Mexico Gulf of Oman Gulf of Thailand Persian Gulf

- 2. Use textbooks, library books, or the Internet to research your body of water. Your postcard summary should include the following six characteristics of your body of water.
 - climate
 - water temperature
 - marine life
 - nearby countries
 - influence on local countries
 - interesting piece of information about the area
- 3. The postcard front should have a colored drawing based on your interesting piece of information about the body of water. (Photos from magazines or Internet may also be used).
- 4. On the back of the postcard in the upper left side, you will write a short description of your picture and a summary, including the characteristics listed above in #2. In the message area of the postcard, describe your imaginary (or real) visit to this location.
- 5. On the back of the postcard in the upper right side, you will draw a stamp representing something from a country next to your body of water. Address the postcard.

See example on following page.

Use the list below to write the correct term for each definition on the line provided.

biological oceanographers chemical oceanographers drilling platforms geological oceanographers hydrosphere ocean oceanographers	oceanography physical oceanographers seas thermal energy tidal power topography underwater research vehicle
1.	detailed charting of the features of an area; heights, depth, and shapes of the surface of an area
2.	scientists who study ocean sediments and the topography of the ocean floor
3.	an energy source obtained from the ocean's tides
4.	the vast body of saltwater that covers almost three-fourths of Earth's surface
5.	an energy source obtained from the ocean's direct absorption of sunlight and transformed to heat
6.	ships or stationary structures designed to obtain sediment, rock samples, gas, or oil from the deep-ocean floor
7.	scientists who study the distribution, natural history, and environment of marine life
8.	scientists who study the ocean
9.	waters of the Earth

 10.	scientists who study chemical composition of seawater and the chemical reactions that occur in seawater
 11.	submersible or submarine specially equipped to explore and study the deep areas of the ocean
 12.	smaller bodies of saltwater which are frequently enclosed by land
 13.	the study of Earth's oceans
 14.	scientists who study the change in seawater and the motion of seawater

Unit 2: Measuring the Ocean

Unit Focus

This unit describes how oceanographers measure the ocean's chemical and physical characteristics. Students will learn specific chemical and oceanic physical features, such as salinity, density, and temperature, and the instruments used to measure these features.

Student Goals

- 1. Define salinity.
- 2. Identify methods used to determine salinity.
- 3. Recognize the relationship between salinity and density of the oceans.
- 4. Give examples of how humans employ technology to study the ocean floor.

Vocabulary

Study the vocabulary words and definitions below.

clarity	the state or quality of being clear or transparent to the eye; clearness of water; depth to which light can travel in water
corer	a cylindrical device used to obtain a sample of sediment from the ocean floor
decompression	the gradual return of persons (such as deep-sea divers) or conditions to normal atmospheric pressure
density	in <i>science</i> —the mass (amount of matter) of an object per unit volume (space occupied); density = mass/volume (d) = $\frac{m}{v}$
dredge	a scoop-like device used to collect rock samples from the ocean floor
drift bottle	an instrument used to measure the direction and speed of ocean currents
echo sounding	a method that uses sound waves to determine the depth of the ocean floor; also called the <i>precision depth recorder</i>
grab sampler	a device that picks up sediment from the ocean floor
hydrometer	an instrument that measures the density of water

ion	. an electrically charged atom or molecule formed by gaining or losing one or more electrons
Nansen bottle	. an instrument that records the temperature at the ocean's surface and at various depths below the surface
plankton	. small, usually microscopic plant or animal organisms that float or drift in the ocean
plankton net	. a cone-shaped net of fine mesh that is pulled through water to collect plankton
salinity	. the measure of the amount of dissolved salts (solids) in seawater
SCUBA	. acronym for s elf- c ontained u nderwater b reathing a pparatus; portable air tank used by divers
secchi disk	. an instrument used to measure the clarity (clearness) of water
seine net	. a fishing or sampling net that hangs straight in the water, separating one area from another
seismic profiling	. echo sounding using powerful sound waves that reach below the surface of the ocean floor

side scan sonar	a method that uses sound waves to view a wide area of the ocean floor; provides pictures of objects on the ocean floor
sodium chloride	NaCl (chemical formula); common table salt; the most common salt in seawater
titration apparatus	an instrument that measures the amount of substances in seawater
trawl	a large net pulled along the bottom of the ocean to gather animals that live on the ocean floor

Introduction: Measuring the Ocean—Collecting Information

Most oceanographers study the ocean with a specific purpose in mind. Some may study the chemical composition of seawater. Others may study its physical properties. For example, a *chemical oceanographer* may measure the amount of dissolved salts in seawater. This would help to detect changes that could affect different organisms. On the other hand, a *physical*

Oceanographers may use something as simple as a bottle with a message sealed inside it.

oceanographer may want to discover the direction and speed of the ocean's currents. To collect this information, the oceanographer may use something as simple as a bottle with a message sealed inside it, which drifts across the ocean until someone along a coast discovers it. In contrast, a *geological oceanographer* may have to use complex instruments capable of bouncing sound waves off the ocean floor in order to chart the ocean's topography.

The Ocean's Chemical and Physical Features and How They Are Measured

Salinity. Salinity is the measure of the amount of dissolved solids, or salts, in seawater. Water dissolves many materials. It's easy to see this when we spoon sugar into a glass of tea, but it's rare—in fact nearly impossible—to observe rainwater percolating through the soil and dissolving weathered rock and minerals. Whether we see it or not, that is what happens. After passing through soil, rainwater carries dissolved minerals (mostly salts) into rivers, and rivers then carry these minerals into the ocean.

Knowing the salinity of specific regions helps scientists determine the location of different organisms. Certain kinds of ocean life thrive in certain salinities. Interestingly, ocean water has a similar salinity to that of our own body fluids—about three percent.

inajor it		
lon	Symbol	Percentage of lons in Seawater by Weight
Chloride	CI	55.07
Sodium	Na⁺	30.62
Sulfate	SO ₄ ²⁻	7.72
Magnesium	Mg ²⁺	3.68
Calcium	Ca ²⁺	1.17
Potassium	К+	1.10
trace elements*		.64
		100.00

Major lons Found in Saltwater

* Elements in amounts less than on part per million.

To measure salinity, oceanographers use several methods. One method is measuring the **ions** concentrated in the water sample (see previous page). When salts dissolve in water they form ions.

A total of six major ions are responsible for about 99% of the dissolved salts in the ocean. Some of these ions are sodium (Na) and chloride (Cl), the two ions that make up **sodium chloride** (NaCl), or salt. Other ions that can be measured are sulfate (SO₄), magnesium (Mg), calcium (Ca), and potassium (K). Other elements dissolved in seawater and present in concentrations less than one part per million are called *trace elements*. For example, bicarbonate (HCO₃) is a trace element found in seawater at .40 percent. By measuring these ion concentrations, oceanographers obtain the approximate salinity of seawater. Conductivity testing is another method used to determine salinity. An electrical current is passed through the water. The more NaCl ions there are, or the higher the salinity, the more easily the electrical current flows. Oceanographers also use a *refractometer* to measure the *refraction* (bending) of light through a sample of water. The change in angle of the light changes as the salinity changes.

Density. Recall a documentary you've seen on whales, or giant sea turtles. Remember how you watched them glide gracefully through the

water, moving their thousands of pounds with seemingly little effort? Why didn't that blue whale weighing 150 tons sink to the bottom? Now remember a documentary or movie that depicted dinosaurs, or rhinoceros, or even elephants using their feet to walk over land. Note how much harder it is for huge land


animals to travel. What accounts for the ease with which large animals can move through the water as compared to the large animals traveling on land?

Large land animals have to balance and support their own weight, carrying a thousand or so pounds across the ground. But ocean animals are assisted in carrying their weight by the **density** of ocean water. To understand the concept of density, carry out this simple experiment. First, pass your hand through air. Then pass your hand through water. Which movement took more effort? Which is more dense, air or water? As you've discovered, water is more dense than air. (In fact, water is 800 times more

dense than air.) Now add to pure water all the salt that it collects as it heads towards the ocean, and you can see that seawater is much more dense than air.

To determine density, we measure the mass in a particular volume of space. Take, for example, a glass of tea. If you dissolve a spoonful of sugar in it, its volume—or the space it filled—does not increase. But its mass—or

Density—If you dissolve a spoonful of sugar in a glass of tea, its volume—or the space it filled—does not increase. But its mass—or its amount of matter, does increase.

its amount of matter, does increase. The high mass of salts (or its salinity) in a particular measure of seawater, or its density, helps to support the giant blue whale on its travels through the ocean.

Less dense substances will remain above more dense substances. Air remains above water because it is less dense than water. Fresh water hasn't collected salts and minerals, so it will remain above heavier, salt-filled seawater. Oil, although it may seem more dense than ocean water, is actually less dense. Here's

the proof. Remember pictures on the news of an oil freighter spilling its load? Remember seeing the oil floating across the ocean's surface producing an oil slick? The oil floated and spread, like a poisonous blanket. If that oil had been more dense than seawater, it would have sunk.

To measure the density of a substance, oceanographers use a **hydrometer**. A *hydrometer* is a weighted glass tube that floats upright in water. It will float high in water that is heavy or more dense, such as seawater, and it will sink in water that is light or less dense, such as fresh water.

Temperature. Temperature also increases or decreases density. Heat is a form of energy. When heat is added to water, molecules move more rapidly and farther apart. When the water is cooled, the molecules move towards one another and consequently there will be more molecules per cubic centimeter. When water molecules

A hydrometer is a weighted glass tube that floats upright in water.

move more slowly and remain closer together, the more dense the water will be. When molecules in water move rapidly and are, therefore, farther apart, the less dense the water will be. So warm water is lighter and remains on the surface, whereas cooler water is more dense and sinks.

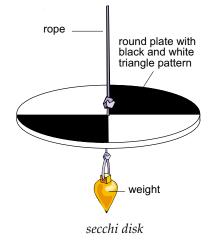
> Oceanographers use a **Nansen bottle** to measure water temperature. They lower the bottle to different depths, collect some water, and measure its temperature. Then they bring the sample to the surface for further analysis.

Studying water temperature has raised some interesting questions about marine life. For instance, how do organisms keep from freezing to

death in frigid water temperatures? The answer? Some organisms have a kind of *antifreeze* in their blood that protects them against freezing—just as the antifreeze in a car's radiator keeps the engine block from freezing in the winter.

Oceanographers

use a Nansen


temperature.

bottle to measure water

Clarity. Marine plants, like nearly all plants on Earth, need light to produce food and survive. By studying how deeply light penetrates different regions of the ocean, oceanographers can determine where plant life could survive and where it could not survive.

How do organisms keep from freezing to death in frigid water temperatures?

Oceanographers use a **secchi disk** to measure **clarity**, or clearness, of water. The secchi disk is a round plate with a black and white triangle pattern painted on its surface. Oceanographers lower the secchi disk on a rope into the ocean until the black and white pattern can no longer be seen. By measuring the length of rope that's been submerged into the water, oceanographers can measure the number of meters light penetrates in a particular area of the ocean.

Unit 2: Measuring the Ocean

Composition. Take a look at a periodic table printed in Appendix A. This chart includes every known element scientists have discovered up to now. Then imagine reaching down into the ocean and scooping up a few teaspoonfuls of water in the cup of your hand. In your hand you now hold almost all of the chemical elements that exist in nature.

Scientists have also discovered that the proportions of the major elements vary only slightly from one ocean to another. This finding supports the notion that seawater flows from one ocean to another. It may take thousands of years, but eventually a particular cup of water will circulate through all the oceans on Earth.

Three particular gases that chemical oceanographers test for in seawater are oxygen, nitrogen, and carbon dioxide. Each of these gases is used by plants and other organisms for particular processes. For example, oxygen is used by plants and animals during respiration. And carbon dioxide is used by plants during photosynthesis.

To determine the amount of these gases in seawater, oceanographers use a **titration apparatus**. A *titration apparatus* consists of pipettes, or tubes, which slowly drop a chemical indicator into seawater, allowing scientists to see if a chemical reaction will occur and how quickly. The nature of the chemical reaction indicates the amount of oxygen, nitrogen, and carbon dioxide the seawater contains.

Moving water is a powerful force and can carry marine life great distances.

Currents. The movement of large masses of ocean water is called a *current*. The study of currents reveals both the direction and speed of ocean waters. Moving water is a powerful force and can carry marine life great distances. For example, some marine organisms begin their life near the shore, and then they are carried out to sea as eggs or larvae by currents. Some marine life that live near shore feed upon plants and organisms carried in by ocean currents.

We're all familiar with the cartoon of a man or woman stranded on an island who finds a message in a bottle. In fact, oceanographers use **drift bottles** to collect physical data about ocean currents. They release bottles (in the oceans) containing cards that ask the finder the date, time, and location of the discovery, and request that the finder return the card. Oceanographers use this information to chart ocean currents.

Sampling

The Ocean Floor. When we think of the ocean floor, it's easy to imagine a very dark and cold place with little life. But the ocean floor supports a large community of organisms. Some of these life forms, such as lobsters, crabs, and clams, even make their way to our dinner tables. The group of organisms that live in or on the ocean's bottom are known as *benthic organisms*.

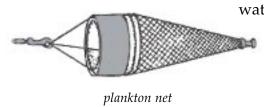
Oceanographers are particularly interested in the life styles of benthic organisms because their food supply is limited. As you know, plants survive by using sunlight for photosynthesis. But light does not penetrate to all parts of the ocean floor, and so there are no plants for benthic organisms to feed on. Consequently, benthic

trawl net

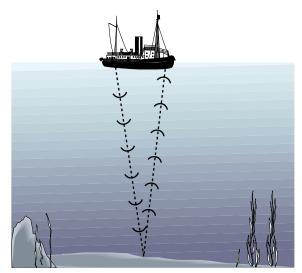
organisms are dependent for food or organic materials from the surface that settle to the bottom. To study the benthos, the organisms that live in or on the ocean's bottom, oceanographers use **trawls**—large nets that are pulled along the bottom to capture animals.

Oceanographers also collect *sediments*—actual samples of the seafloor—to determine the *age* and *composition* of the ocean floor. Sediment samples are collected by mechanical devices. A device known as a **grab sampler** looks like a giant set of teeth which bites into the ocean floor. In its "mouth," it collects a sediment known as a *grab sample*. A **dredge**—a kind of giant scoop—collects rock samples as it is dragged along the ocean floor.

A device known as a **corer** also removes sediment samples from the seafloor. The corer works in the same way as an apple corer and



A dredge is a kind of giant scoop that is dragged among the ocean floor.


drills a hole in the seafloor to collect a cylindrical or tube-shaped sample. From these core samples, oceanographers can study the changes in marine life populations over thousands of years and the rate at which sediment has accumulated on the ocean floor.

Above the Ocean Floor. All marine life depends in some way on a large group of plants and animals invisible to the human eye. These tiny organisms are called **plankton**. To gather these life forms for study, oceanographers tow a cone-shaped net called a **plankton net** through the

water. To capture fish that travel in schools, oceanographers use stationary nets called **seine nets**. By setting these nets at particular depths, oceanographers can capture different kinds of fish.

Depth. Just as the land we live on is uneven, ranging from deep valleys to high mountains, the depth of the ocean floor varies greatly from place to place. Until the 1920s, little was known about the *topography*—or rises and dips—of the ocean bottom. Scientists used to tie a weight on a rope and lower it until it reached bottom. This method, as you can imagine, was slow and imprecise.

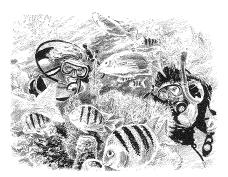
The echo-sounding method sends sound waves through the water to the ocean floor and measures the time it takes for the sound wave to bounce off the ocean floor and (return) back to the ship.

In the 1920s, *sonar* (sound navigation and ranging) was invented. Sonar uses the **echosounding** method, sending sound waves through the water to the ocean floor. By measuring the time it takes for sound waves to bounce off the ocean floor and echo (return) back to the ship, oceanographers can chart the ocean bottom.

Interestingly, the use of submarines in warfare during World War II helped speed the refinement of sonar. Submarine

personnel needed to remain aware of their surroundings in order to survive their "blind" travels through the ocean. In order to "see," subs sent out sonar and were able to detect, among other things, enemy ships and subs. Some sea animals, for example dolphins and porpoises, use a system similar to sonar to "see" in their underwater worlds.

Seismic profilers and **side scan sonars** are two powerful types of echo sounding methods. **Seismic profiling** uses powerful sound waves produced by explosions. These waves reach below the surface of the seafloor and bounce off buried rocks. This method gives researchers a deeper geological profile of the ocean floor. Side scan sonars use sound waves to view a wide area of the seafloor. Sound waves are sent out to the sides of the ship and are received by an instrument towed behind the ship. Side scan sonars provide pictures of objects on the seafloor and can be used to locate shipwrecks and large schools of fish.


Satellites gather more data faster than ocean vessels with echo sounding can. Signals sent from a satellite are bounced off the ocean surface rather than the ocean floor. Utilizing ocean surface data to map the ocean floor works because the water level of the ocean varies. Water will pile up over undersea mountains and dip over undersea trenches. The dips and hills in the ocean level are revealed by accurate satellite measurements. These measurements are fed into a computer to produce a picture of the ocean floor.

Diving. Most of us have used diving equipment or have seen the air tanks divers strap to their backs to breathe underwater. These tanks are called *aqualungs* or **SCUBA** (self-contained underwater breathing apparatus). Scuba gear enables divers to spend up to an hour underwater exploring up close the marine life and habitats in the upper levels of the ocean.

Diving underwater does have its problems. Water pressure—or the force exerted by water—increases with depth. Divers using scuba tanks can withstand pressure to 36 meters (or approximately 118 feet) below the surface. Beyond 36 meters, divers need to wear pressure suits. At depths requiring equipment, divers must go through **decompression** very slowly as they swim to the surface. Most of the ocean floor is too deep for divers to explore without being harmed by extreme water pressure.

Summary

To fully understand Earth's oceans, oceanographers attempt to measure their physical features. Measuring salinity, density, temperature, clarity, composition, and currents, and sampling the ocean floor takes specific and often varied equipment.

Use the list below to complete the following statements.

	benthos corer decompression density	drift bottle geological salinity satellites	SCUBA sediment samples side scan sonars sonar
1.	A	may	be used by oceanographers
	study the direction a	and speed of ocean	currents.
2.		is the m	neasure of the amount of
	dissolved solids (sal	t) in seawater.	
3.	To determine		, we measure the mas
	in a particular volur	ne of space.	
4.	Divers use air tanks	known as	for
	exploring and for st	udying underwate	r habitats.
5.	When divers surface	e from depths of m	ore than 36 meters, they mu
	go through		·
6.	Scientists use		to bounce sound wav
	off the ocean floor to	measure depth.	
7.	Organisms that live	in or on the ocean'	's hottom are known as

- 8. Oceanographers collect ______ to study the seafloor.
- 9. A ______ removes cylindrically shaped sediments from the seafloor.
- Seismic profilers use powerful sound waves produced by explosions to give researchers a ______ profile of the ocean floor.
- 11. _____ provide pictures of objects on the seafloor that can be used to locate shipwrecks and large schools of fish.
- 12. A picture of the seafloor can also be produced from
 _______ that bounce signals off the ocean surface.

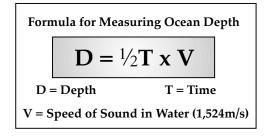
Match each **feature** of the ocean with the correct **instrument** used to measure or sample it. Write the letter on the line provided.

1.	temperature	A.	drift bottle
2.	depth	B.	grab sampler, dredge, corer
3.	clarity of water	C.	hydrometer
4.	gases in seawater	D.	Nansen bottle
5.	density	E.	secchi disk
6.	currents	F.	sonar
7.	sediments on seafloor	G.	titration apparatus
8.	plankton	H.	trawl
9.	benthos	I.	plankton net

Answer the following using complete sentences.

•	How do oceanographers use echo sounding to determine the dept
	of the ocean?
	What is the difference between seismic profiling and side scan sonar?
	What does SCUBA stand for?
	What are two advantages in using SCUBA to explore marine life?
	What are three ways to collect sediments from the ocean floor?

Lab Activity: Ocean Depth


Investigate:

- Find the depths of the ocean in given locations.
- Plot the depths of the ocean on a graph to make a topographical map.

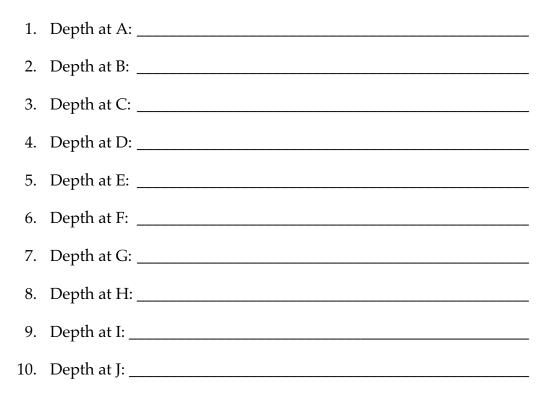
Materials:

- data chart
- pencil
- paper

Much of the ocean's topography has been mapped by the use of echo-sounding devices. In echo sounding, sound is sent from a ship's transmitter to the ocean's bottom (see illustration on page 43). The sound bounces off the ocean floor and is picked up by a receiver on the ship. Scientist know that the speed of sound in water is 1,524 meters per second (m/s). By using the speed of sound and applying the formula below, the scientists can measure and map the depth of the ocean.

Procedure:

- 1. Find the depths of the ocean in the given locations.
- 2. Plot the depths on the graph to make a topographical map.



Observation:

A ship trav the follow	veling in the Gulf o ing sonar signals:	f Mexico receives
signals	location	time
1 st	location A	2 seconds
2 nd	location B	4 seconds
3rd	location C	8 seconds
4 th	location D	16 seconds
5 th	location E	12 seconds
6 th	location F	8 seconds
7 th	location G	4 seconds
8 th	location H	4 seconds
9 th	location I	4 seconds
10 th	location J	2 seconds

Find the **depth in meters** *at each location. Remember to use the* **formula** *on the previous page to complete the answers.*

Analysis:

Plot the **depth data** *from the previous page on the graph below. Using your own paper, draw a map of this part of the Gulf of Mexico's ocean floor. Round numbers to the nearest whole number to plot on the graph.*

Ocean Depth Measured by Sounding

Use your **graph** *on the previous page to answer the following.*

clude about the depth of the ocean?
me received by the sonar?
ne received by the sonar?

Match each definition with the correct term. Write the letter on the line provided.

1.	the measure of the amount of dissolved salts (solids) in seawater	A.	clarity
2.	in <i>science</i> —the mass (amount of matter) of an object per unit volume (space occupied)	B.	density
3.	an instrument that measures the density of water	C.	drift bottle
4.	an instrument that records the temperature at the ocean's surface and at various depths below the surface	D.	hydrometer
5.	an instrument used to measure the clarity (clearness) of water	E.	ion
6.	the state or quality of being clear or transparent to the eye; clearness of water; depth to which light can travel in water	F.	Nansen bottle
7.	an instrument that measures the amount of substances in seawater	G.	salinity
8.	an instrument used to measure the direction and speed of ocean currents	H.	secchi disk
9.	an electrically charged atom or molecule formed by gaining or losing one or more electrons	I.	sodium chloride
10.	NaCl (chemical formula); common table salt; the most common salt in seawater	J.	titration apparatus

Use the list below to write the correct term for each definition on the line provided.

corer decompression dredge echo sounding	plank	ton net	seine net seismic profiling side scan sonar trawl
	S		ice used to obtain a ent from the ocean
	C	he gradual retur leep-sea divers) normal atmosphe	
	ł		c ontained u nderwater atus; portable air tank
	t		l along the bottom of er animals that live on
		a device that pick he ocean floor	ks up sediment from
		a scoop-like devi samples from the	ce used to collect rock e ocean floor
	2		croscopic plant or s that float or drift in
	S		oling net that hangs ater, separating one r

9.	a cone-shaped net of fine mesh that is pulled through water to collect plankton
10.	echo sounding using powerful sound waves that reach below the surface of the ocean floor
11.	a method that uses sound waves to view a wide area of the ocean floor; provides pictures of objects on the ocean floor
12.	a method that uses sound waves to determine the depth of the ocean floor; also called the <i>precision depth</i>

recorder

Unit 3: The Nature of Seawater

Unit Focus

This unit explains the components of seawater and the differences in salinity throughout the world's oceans. Students will gain knowledge about factors such as precipitation, temperature, location, and evaporation, which affect salinity in the oceans.

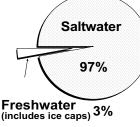
Student Goals

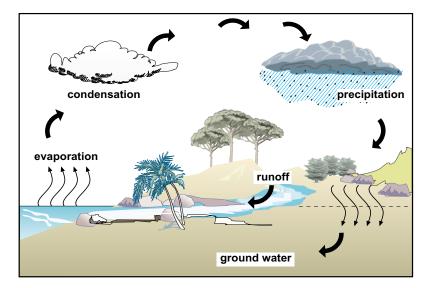
- 1. Describe how the oceans became salty.
- 2. Define salinity.
- 3. Explain how precipitation, temperature, and evaporation affect the salinity of water.

Vocabulary

Study the vocabulary words and definitions below.

acid (acidic)	a compound that joins with a base to form a salt; will cause blue litmus paper to turn red; high concentration of H ⁺ ions
base (basic)	a compound that joins with an acid to form a salt; will cause red litmus paper to turn blue; high concentration of OH ⁻ ions
brackish	having a lower salinity than normal seawater; a mixture of freshwater and saltwater
buffer	chemical compound that maintains pH level through chemical reactions
condense	to change from a gas or vapor to a liquid
crystallization	a method of desalination involving the freezing of water and then removing the ice crystals to produce freshwater
desalination	a process by which salt is removed from seawater
distillation	a method of desalination involving the evaporation of water with high heat and then condensing it by cooling
evaporate	to change from a liquid into a gas or vapor

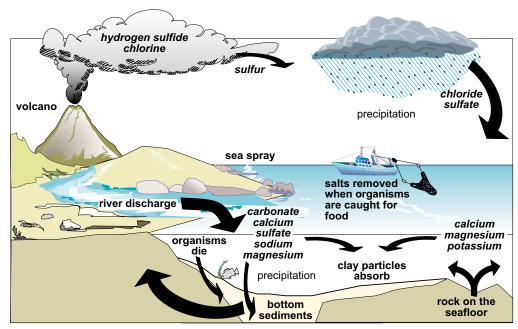

filtration	a method of desalination which involves filtering water through special membranes or materials
hydrologic cycle	the movement of water from the oceans and the land to the atmosphere and then back; also called the <i>water cycle</i> , nature's recycling of freshwater <i>Example</i> : water evaporates into the air, condenses, and falls back to the ground as precipitation.
hypersaline	. water with high levels of salinity
ion	an electrically charged atom or molecule formed by gaining or losing one or more electrons
рН	a measure of the concentration of hydrogen ions (H ⁺) in a solution expressed as a scale, ranging from less than zero to more than 14, that in turn expresses the concentration of acid or base
sodium chloride	. NaCl (chemical formula); common table salt; the most common salt in seawater
thermocline	a layer of water in the ocean where the temperature of the water changes rapidly
water vapor	. water in the form of gas


Introduction: The Nature of Seawater

Water appears on Earth in many different places and in many different forms. In oceans, rivers, and lakes, water most often appears as a liquid. Overhead, in banks of clouds drifting by, water has collected as a gaseous vapor. And in glaciers, icebergs, and snow packs, water is in solid form. (Some solid water or ice will melt and become liquid. Some, such as the ice in Antarctica, will never warm above the freezing point.) The *water cycle*, or **hydrologic cycle**, is the movement of water from the ocean and the land to the atmosphere and then back.

Over 97 percent of the water on Earth is too salty to drink! Through evaporation and then precipitation, water becomes purified and free of salt. On the diagram below, follow the pathway of water. One of the paths of the hydrologic cycle, or *water cycle*, is **evaporation**. During evaporation, liquid water turns into a gas. Water molecules at the water's

surface move into the air as water vapor. Water vapor is water in a gaseous state. When molecules of water vapor come close enough together, a cloud is formed. The process of cloud formation is called *condensation*. Condensation is the part of the water cycle that typically comes after evaporation. When the clouds become *saturated*, or full, from so many water droplets condensing together, then the droplets fall to the Earth as *precipitation*. Precipitation may be in the form of rain, sleet, or snow.


water cycle

Some of the water that returns to Earth will wash into the oceans, lakes, and rivers. This water is called *runoff*. The rest of the water soaks into the ground and becomes *groundwater*. Eventually, the groundwater will return to the ocean through underground channels, where it will continue in the water cycle.

Seawater: So Much to See, So Little to Drink

You may have accidentally swallowed some seawater while swimming in the ocean or gulf. This water, you instantly realized, was far different from *drinking* water. Salts in seawater make it virtually undrinkable. When salts dissolve in water, they form **ions**. Most of the salt in seawater is made up of sodium and chloride ions. Together, these two make up common table salt, or NaCl (**sodium chloride**). These and four other major ions make up a little more than 99 percent of the elements in seawater (see page 37-38). The four other ions are magnesium, sulfate, calcium, and potassium. Although seawater contains almost every element that exists in nature, the others are present only as *trace elements*, such as bicarbonate (HCO₃), and exist in very small quantities.

sea salt cycling - salts are constantly being added and removed from seawater

Where did these elements in the seawater come from? Why are the oceans salty? Well, as the rivers move to the ocean, they dissolve the rocks that they pass over. See the *sea salt cycle* above. The rocks on the riverbeds contain elements that eventually erode and dissolve into the

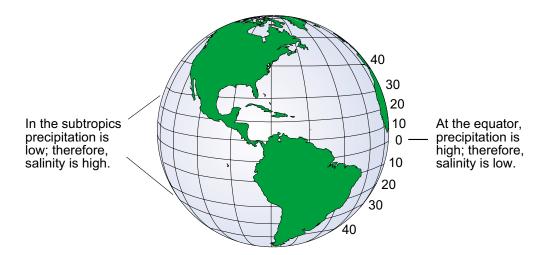
water. This process takes a very long time! When water evaporates from the ocean and is returned to the land as rain, the dissolved elements are left behind in the ocean. This is why the oceans are salty. Some salts can be removed from the ocean when organisms, such as fish, are taken from the ocean. This percentage of salt loss is very small.

Salinity: Water and Salt

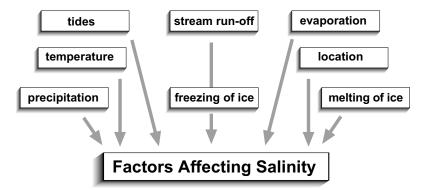
To better understand the composition of seawater, oceanographers measure the amount of dissolved salts in the ocean. Salinity, or the amount of dissolved salts in seawater, is measured in parts of dissolved salts per 1,000 parts of water—or parts per thousand $(\frac{0}{00})$. The average salinity of the ocean is 35 parts of salt per 1,000 parts of water or $35\frac{0}{00}$.

Differences in Salinity

Salinity in the ocean differs from one location to the next. For example, the Red Sea has a salinity reading of 40 and 41 parts per thousand. The Mediterranean Sea has a salinity reading of 38 and 39 parts per thousand. Both these seas have high salinity readings. Bodies of water with high salinities are called **hypersaline**. The Red Sea and Mediterranean Sea are


Dead Sea

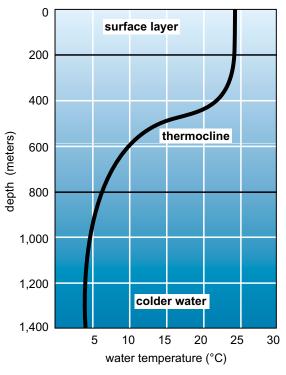
hypersaline because they are in hot, dry areas that have high evaporation and less precipitation than open oceans. Remember, when water evaporates from saltwater, the salt is left behind. Evaporation increases the salinity of saltwater. Other bodies of water which are hypersaline include the Dead Sea, the Persian Gulf, the Great Salt Lake in Utah, and areas around the Gulf of Mexico.


Salinity of saltwater can also change according to latitude. Look at a globe or world map. Locate the area that is 20 degrees north latitude and 20 degrees south latitude. The salinity in this area is about 36 parts per thousand. The salinity at this latitude is higher than at zero degrees

latitude or at the equator. Why do you think that the salinity is lower at the equator? If you answered because it rains more at the equator then you were right! Rain dilutes the water, making it less salty.

Coastal water typically has a lower salinity. Rivers and streams enter the oceans along the coastlines, providing freshwater to the oceans. This freshwater input lowers the salinity of the oceans. Rainwater runoff from the land impacts the salinity of the oceans near the coast as well. Water with a lowered salinity is called **brackish** water. Brackish water is a mixture of freshwater and saltwater.

Salinity can also change as you go deeper in the ocean. The salinity at the bottom of the ocean is greater than at the surface. The change in salinity as you go deeper in the ocean is not uniform. In other words, as you go deeper, salinity does not increase but varies according to factors such as currents and temperature. There is a layer of water in the ocean called the *halocline*. The halocline shows a rapid change in salinity in a depth area between 100 and 200 meters. The change is an increase in salinity. Salinity increases in the halocline because the temperature of the water becomes



colder at these depths. Cold water contains molecules that are packed closer together. The salt molecules move closer together as well. The molecules moving closer together make salinity higher. In contrast, water at the surface of the ocean is warmer, and the molecules are farther apart, making the water less salty. Other factors besides precipitation, latitude, depth, and temperature affect salinity. These factors are shown in the diagram on page 64.

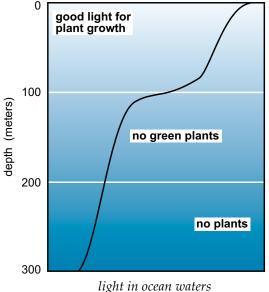
Temperatures of the Ocean: From Freezing to Warm

The surface temperature of the ocean varies depending on the latitude (its distance from the equator) and the season of the year. Seawater in the Antarctic Ocean during the winter is much colder than the waters in the South Pacific during the summer.

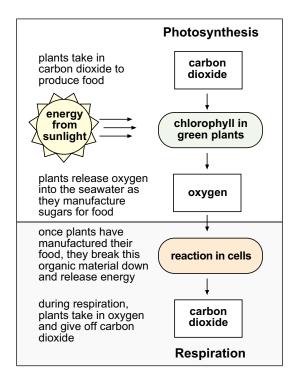
Water at lower depths in the ocean is always colder than water at higher depths and on the surface. On a warm day at the beach, the surface of the ocean, having been warmed by the sun, may feel warm to your skin. As

temperature of ocean water decreases with increasing depth

you swim below the water, however, the temperature lowers, and continues to decrease the further down you go. As you'll remember from your reading in Unit 2, warm water is lighter and so remains on the surface, whereas cooler water more dense and sinks.


There is a layer of water called the **thermocline** beneath the surface of the ocean where temperature drops radically. If you were swimming through the thermocline, it would be like a sudden burst of cold. Once you passed through it, your body would begin feeling a more gradual drop in temperature as you continued your descent.

Light in Ocean Waters


On average, light reaches to about 200 meters below the surface of the ocean, or the distance of two football fields. However, light is not adequate beyond about 100 meters to support photosynthesis (food-making) and plant growth. Beyond about 200 meters complete darkness prevails.

Dissolved Gases in Seawater

You've read about dissolved solids, such as salt, in seawater. In addition to

solids, seawater also contains dissolved *gases* that come from mixing with air in the atmosphere. Nitrogen, carbon dioxide, and oxygen are the most common dissolved gases found in the ocean.

photosynthesis and respiration cycle

Both plants and animals play roles in removing and replacing gases in seawater. Plants take in and release both oxygen and carbon dioxide. In the process known as photosynthesis, plants use carbon dioxide to produce food. During this stage, plants release oxygen into the seawater as they manufacture sugars for food. Once plants have manufactured their food, they break this organic material down and release energy. This is called *respiration*. During respiration, plants take in oxygen and give off carbon dioxide—a reversal of the exchange of gases occurring during photosynthesis. Animals also undergo respiration as they burn oxygen to release energy from food.

CO₂: Buffering Seawater

Extreme shifts in the concentration of either **acids** or **bases** in seawater would threaten or kill many organisms. The measure of the concentration of acids and bases in a solution is done on a scale called **pH**. The scale ranges from less than zero to more than 14. A measure of less than seven on the scale indicates a concentration of acids and a *high* concentration of hydrogen ions (H⁺); a measure of greater than seven indicates a *high* concentration of base, a high concentration of OH⁻ ions, and a low concentration of hydrogen ions (H⁺). There is a constant chemical reaction in seawater that maintains a pH range of 7.5 to 8.5—the range that will support marine life.

Essential to this chemical reaction is carbon dioxide (CO_2) . Carbon dioxide combines with water to produce carbonic acid, or H_2CO_3 . When there are too many hydrogen ions (H^+) released in seawater, chemical reactions occur and the additional hydrogen ions are absorbed by forming more H_2CO_3 . If there are not enough hydrogen ions (H^+) to maintain the necessary pH range, carbonic acid in the seawater releases hydrogen ions into the water. Without this **buffering** system, few marine animals could survive changes in the ocean's pH.

Desalination: A New Source of Freshwater

Freshwater—once taken for granted—is now in short supply. Increases in world population and industry have endangered this essential resource. Scientists have begun developing **desalination** methods—or ways to remove salt from seawater and produce freshwater. At the present time, scientists are using three different desalination methods to process saltwater into freshwater; distillation, filtration, and crystallization. Desalination is far more costly than obtaining freshwater from groundwater or surface-water supplies.

Distillation—the most successful method—is a process by which water is heated in a domed structure until it evaporates and becomes **water vapor**. Evaporated water does not contain salt. The evaporated water then **condenses** on the dome to run down its surface into troughs. During **filtration**, water is filtered through special membranes or materials that allow water to pass through but trap salt and other impurities. In the process of **crystallization**, water is frozen. The ice crystals are removed, leaving the salt behind. The ice crystals can then be melted into freshwater.

Summary

Most of the water on Earth is salty and unfit for drinking. Through evaporation and then precipitation, water becomes purified and free of salt. *Salinity* is the measure of the salt in the ocean. Some seawater is *brackish*, with a lower salinity than normal seawater. Some seawater is *hypersaline* and has such a high salinity that nearly all objects in it will float.

Surface temperature in the ocean varies depending on the latitude and season of the year. Closer to the equator, the water is warmer; nearer the poles, the water is much colder. In addition, water at lower depths is always colder than water directly above it and on the surface. Heat from the sun warms the surface, and the warmer water floats, whereas colder water sinks. The *thermocline* is a layer of water in the ocean where the temperature drops rapidly.

Nitrogen, carbon dioxide, and oxygen are the most common dissolved gases in the ocean. Carbon dioxide (CO_2) plays an especially important function. It helps to *buffer* seawater against sudden changes in its pH.

Overuse and contamination of water has left us with a shrinking supply of freshwater. Scientists are experimenting with different methods of *desalination* to obtain freshwater from saltwater.

Most of the water on Earth is salty and unfit for drinking.

Practice	

Answer the following questions using short answers.

- 1. How much of the Earth's water is saltwater? _____
- 2. Why doesn't the Earth run out of freshwater? _____

3. What six major ions make up more than 99 percent of seawater?

4. Where will *hypersaline* waters occur? _____

5. Where will *brackish* waters occur?_____

6.	What are the factors that affect salinity?
	······································
7.	Why is carbon dioxide important to marine life?
8.	What are the three most common dissolved gases in seawater

Use the list below to complete the following statements. **One or more words will be used more than once.**

1. Another name for the water cycle is the _____

cycle.

2. _____, or table salt, is the most common salt

present in seawater.

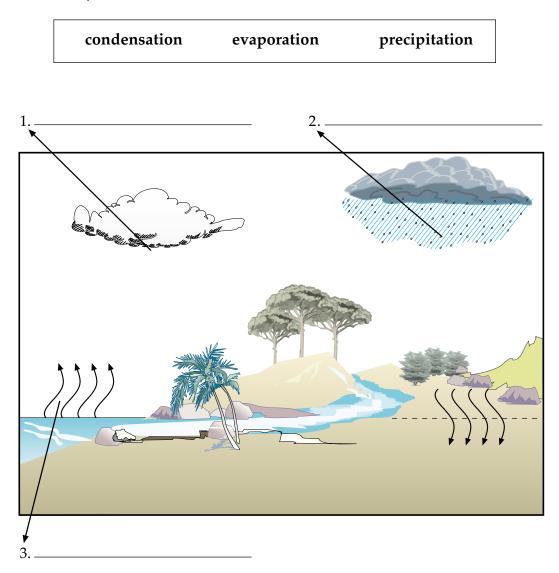
- The average salinity of the oceans is _____ parts per thousand.
- 4. The chemical formula for table salt is NaCl, which is made up of

_____ and _____.

5. Most of Florida's freshwater supply comes from

_____water.

6. The supply of ground water is replenished by the


_____ cycle.

~					
7.	<i>Salinity</i> is the amount of dissolved i				
	the water.				
8.	Water with a lowered salinity is called				
9.	A is a	layer of water in which t	the		
	temperature is much colder than	the water above it.			
10.	Examples of a <i>hypersaline</i> bodies of	of water are			
	//	-/			
	//	, a	nd areas		
	around the				
11.	The temperatures of the oceans v	ary, depending on the			
	and _				
12.	Light penetrates the ocean waters	down to about			
	meter	·S.			
13.	Seawater maintains a constant		range of		
	7.5 to 8.5, which supports marine	life.			
14.	Carbon dioxide is essential for the	e chemical reaction or the	2		
	system	n that maintains the proj	per pH		
	in seawater.				
15.	In a p	process, freshwater is proc	cured by		
	removing salt.				

Use the list below to label the parts of the **water cycle***. Write the correct answer on the line provided.*

Write **True** *if the statement is correct. Write* **False** *if the statement is* **not** *correct.*

 1.	Water appears in many different forms on the Earth's surface.
 2.	During respiration, plants produce food and release oxygen.
 3.	When water <i>evaporates,</i> it turns into a gas.
 4.	The hydrologic cycle produces rain.
 5.	Salinity in the ocean is the same from place to place.
 6.	We can float more easily in saltwater than in freshwater.
 7.	Floating in the Great Salt Lake in Utah would be extremely easy.
 8.	A thermocline is a strip of much warmer water.
 9.	Beyond 200 meters ocean plants grow very slowly.
 10.	Plants add carbon dioxide and oxygen to seawater.
 11.	Scientists use different desalination methods for obtaining freshwater from seawater.
 12.	Carbon dioxide is essential to buffer seawater and maintain the pH level.

Lab Activity 1: Properties of Water

Investigate:

• Determine the mass per volume ratio of saltwater to freshwater.

Materials:

• beaker

tap and saltwater

• flask

• triple-beam balance

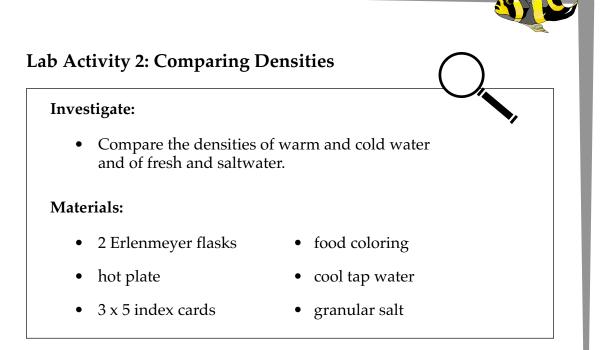
- small jar
 - graduated cylinder

Procedure:

- 1. Obtain a beaker, a flask, and a small jar. Arrange these in order of the volume you think each will hold (from most to least volume).
- 2. Using a triple-beam balance, weigh each empty container to find the mass of each container. Record the mass in the data table on the next page.
- 3. Use a graduated cylinder to add tap water to each container. Fill the containers to one centimeter from the top. Record the amount of water added to each container.
- 4. Weigh each container filled with water to find the mass. Record the mass in the data chart.
- 5. Find the mass of *water* in each container by subtracting the empty-container mass from the filled-container mass.
- 6. Calculate the density of the water in each container by using the following formula:Density = mass (g) divided by the volume (ml).
- 7. Place the calculated density of water in the data chart.
- 8. Repeat steps 1–7 with three volumes of saltwater.
- 9. Clean up your area.

Density Data Chart

containers	mass empty (g)	volume of water (ml)	mass filled with water (g)	mass of water (g)	density of water (9/ _{ml})
flask of tap water	g	ml	g	g	g⁄ml
					,
beaker of tap water	g	ml	g	g	g⁄ _{ml}
jar of tap water	a	ml	a	a	g⁄ _{ml}
	g	mi	g	g	-7 mi
flask of saltwater	g	ml	g	g	g⁄ml
beaker of saltwater	g	ml	g	g	g⁄ _{ml}
jar of saltwater					a (
Sanwaler	g	ml	g	g	^g ∕ml


Average density of freshwater: _____

Average density of saltwater: _____

Analysis:

- 1. Explain how to find the density of a liquid. _____
- 2. Which has a greater density, freshwater or saltwater? _____

Why?_____

Part 1: Warm Water Versus Cold Water

Procedure:

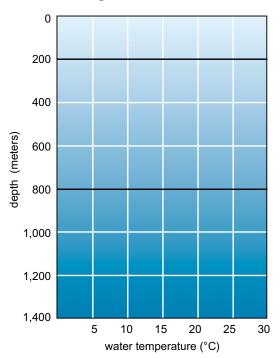
- 1. Obtain an Erlenmeyer flask and fill it with cool tap water.
- 2. Using another Erlenmeyer flask. Fill it one-half full with warm water, and then fill it to the top with cool water.
- 3. Add a drop of food coloring to the flask containing warm water. Stir.
- 4. Place a 3 x 5 index card on top of the warm-water flask and invert the flask. Place the warm-water flask on top of the cool-water flask. The upward pressure of the air will help hold the card.
- 5. Carefully remove the card, and observe what happens. Record your observations in the data chart.
- 6. Repeat steps 1–4 using new water samples and the following inverting methods:

A. cool water on top of warm water

B. flasks held horizontally.

Warm Water vs. Cool Water

test	reaction description
warm water cool water	
cool water warm water	
warm cool water water	


Analysis:

1. Which water sample was more dense? _____

State evidence which indicated this.

2.	Where is most ocean water heated?
3.	How is ocean water heated?
4.	Would it be easier to float in cool water or warm water?
	Explain why it would be easier to float in this water.
5	Label the diagram below with the following terms.
0.	Laber the elagrant below with the following terms.
	A. warmer surface water
	B. uniform cold water

- C. area where heating takes place
- D. thermocline
- E. area where water evaporates

Part 2: Saltwater and Freshwater

Procedure:

- 1. Obtain two flasks and fill both flasks to the top with water.
- 2. Dissolve some salt in one flask.
- 3. Add a drop of food coloring to the salty water. Stir.
- 4. Place the 3 x 5 index card on top of the saltwater flask. Invert the saltwater flask and place it on top of the freshwater flask.
- 5. Carefully remove the card. Observe what happens. Record your observations in data chart.
- 6. Repeat steps 1–5 using the following inverting methods:
 - A. saltwater on bottom
 - B. flasks horizontal.

test	reaction description			
saltwater				
freshwater				
Farra barra ta s a				
freshwater				
saltwater				
saltwater freshwater				

Saltwater vs. Freshwater

Analysis:

1. Which water sample was more dense? _____

Explain why this sample was more dense?_____

- 2. Why is it easier to float in saltwater than freshwater?_____
- 3. List three ways that the density of seawater can be changed. _____

Lab Activity 3: Water Analysis

Investigate:

• Observe the dissolved solids present in seawater, distilled water, and tap water.

Materials:

- distilled water and tap water
- sodium carbonate solution
- hydrochloric acid
- seawater
- barium chloride solution
- 3 small test tubes
- nitric acid solution
- silver nitrate solution

- acetic acid solution
- potassium hydroxide solution
- potassium permanganate
- sulfuric acid
- litmus paper
- graduated cylinder
- hot plate

Procedure:

- 1. Obtain three test tubes.
- 2. Mark the test tubes **S**, **D**, and **T**, so that you are always using the same tube for *seawater*, *distilled water*, and *tap water*.
- 3. You will conduct six different water analysis tests. (See observation chart on page 86.)
- 4. For each test, fill the test tube one-half full of the water to be tested.
- 5. Rinse test tube after each use.

6. Follow the directions which correspond to each water analysis test you will be performing.

Note: These tests do not have to be done in any special order. In fact, if you do them out of order you will avoid having to wait for a chemical others are using.

Remember: A **positive (+)** reaction means that the substance you are testing for is **present**!

Directions for Water Analysis Tests:

Calcium	To each half-filled test tube, add three drops of acetic acid and three drops of sodium carbonate. Record what you observe in each test tube and put your observations in the chart. (White precipitate means +.)
Sulfates	To each half-filled test tube, add three drops of hydrochloric acid. Slowly heat to boiling (over an alcohol burner or element). Then add three drops of barium chloride solution. Record the results. (White precipitate means +.)
Chlorides	To each half-filled test tube, add three drops of nitric acid and three drops of silver nitrate solution. Record the results. (White precipitate means +.)
Ammonia	To only the water sample add four drops of potassium hydroxide and heat gently. Record the results. (White precipitate means +.)
Organic	To only the water sample, add two drops of potassium permanganate solution and five drops of concentrated sulfuric acid. Heat to boiling and record any change. (Purple changing to clear means +.)
рН	To test the water to find out if is acidic or not, touch a piece of litmus paper to the water sample. Record the color of the wet end of the litmus paper. (Pink means <i>acid</i> , blue means <i>base</i> .)

Pre-Lab	Activity 3:	Water	Analysis
I IC-Lab	Activity 5.	value	Allarysis

Use the **lab procedure** *on previous pages to answer the following. Do this* **before** *you perform the lab activities on the next page.*

1. Why should you clearly mark your test tubes seawater, distilled water,

and	tav	water?
our cor	rrp	

- 2. In each test, how much water sample will you use? _____
- 3. If you test four samples and get a positive reaction, what does this indicate?

4. What are the six chemical tests you will perform in lab? _____

- 5. What are the three types of water samples to be used in lab? _____
- 6. What do you add to test for calcium in a water sample? _____
- 7. How will you know if calcium is in your water sample? _____

8.	Describe the test for sulfates.
9.	How will you know if sulfates are present?
).	Describe the test for chlorides.
1.	What will indicate the presence of chlorides?
2.	What solution and how much will you add to the water samples to
	test for the presence of ammonia?
3.	What will indicate the presence of ammonia?
1.	Explain the test for organics
5.	Describe a positive reaction for organics.
	· · · · · · · · · · · · · · · · · · ·

	Water Analysis	Test Observatio	ons
Description of Test Results			
test	distilled water	tap water	seawater
calcium			
sulfates			
chlorides			
ammonia			
organic matter			
рН			

Analysis:

- 1. Which type of water had the most positive results? _____
- 2. Was any test positive for all three types of water?_____

If so, which one?_____

3. Most experiments have a control. The control serves as a standard against which you can compare your results. Which type of water most likely serves as a control in this investigation?

	How did the results of the tests on tap water compare with the
	results from the distilled water?
ļ	How "pure" is your drinking water?
	Was there a difference in the results of the tests on freshwater and
	seawater?
	Explain why there might have been such a difference between the
	two water samples.
	The ocean has been called the "washbowl of the Earth." Why
	might this be a good description of the ocean?

Match each definition with the correct term. Write the letter on the line provided.

1	1.	a layer of water in the ocean where the temperature of the water changes rapidly	A.	brackish
2	2.	to change from a liquid into a gas or vapor	В.	evaporate
3	3.	NaCl (chemical formula); common table salt; the most common salt in seawater	C.	hydrologic cycle
4	4.	the movement of water from the oceans and the land to the atmosphere and then back; also	D.	hypersaline
E	5.	called the <i>water cycle</i> water with high levels of salinity	E.	sodium chloride
6	6.	having a lower salinity than normal seawater; a mixture of freshwater and saltwater	F.	thermocline

Use the list below to write the correct term for each definition on the line provided.

acid base buffer condense	de dis	estallization salination stillation tration	ion pH water vapor
	1.	freezing of wat	salination involving the er and then removing t roduce freshwater
	2.	a method of de filtering water membranes or	0 1
	3.	to change from	a gas or vapor to a liqu
	4.	water in the for	m of gas
	5.		salination involving the water with high heat ar g it by cooling
	6.	a process by wl seawater	nich salt is removed from
	7.	1	ound that maintains pH hemical reactions
		form a salt; will	at joins with an acid to l cause red litmus pape concentration of OH ⁻ ic

- 9. an electrically charged atom or molecule formed by gaining or losing one or more electrons
- a compound that joins with a base to form a salt; will cause blue litmus paper to turn red; high concentration of H⁺ ions
- a measure of the concentration of hydrogen ions (H⁺) in a solution expressed as a scale, ranging from less than zero to more than 14, that in turn expresses the concentration of acid or base

Unit 4: Waves

Unit Focus

This unit emphasizes wave formation and the parts of a wave. Students will also study a variety of wave types and the impact waves have on the coastline.

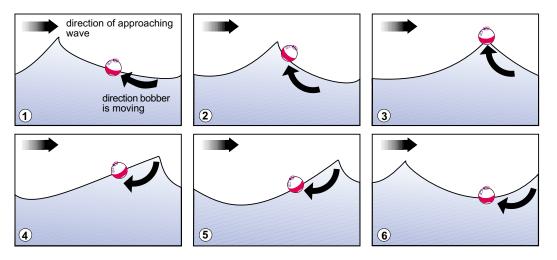
Student Goals

- 1. Define a wave.
- 2. Identify the parts of a wave.
- 3. Describe how deep-water and shallow-water waves form.
- 4. Explain features of the coastline formed by wave action.

Vocabulary

Study the vocabulary words and definitions below.

beach	shore area of a body of water covered by sand or pebbles; area between high-tide mark and low tide mark
capillary waves	small waves or ripples on the surface of the water
crest	highest point on a wave
elliptical orbit	an oval-shaped path around a center point
orbit	curved path around a center point
plunging breaker	wave that collapses and destroys the wave form as it enters shallow water; produces a crashing sound
rogue wave	a large single wave with very high crests and low troughs
sand bar	underwater deposition of sand
sea cave	a hollowed-out portion of rock that has been eroded by waves
sea cliffs	steep faces of rock that have been eroded by waves
sea stacks	columns of hard rock left behind by the erosion of a sea cliff


spilling breaker wave that moves as a uniform line as it enters shallow water; a quiet wave
spits sand bars attached to a mainland or island that extend into open water
terrace a flat platform of rock and sand at the bottom of a sea cliff
trochoidal form of a wave having pointed crests, steep slopes, and flat troughs
trough lowest point on a wave
tsunami (soo-NAM-e) a large wave with a long wavelength; usually produced by an undersea earthquake or volcanic eruption
wave amplitude distance from still-water level to a wave's crest
wave height the vertical distance between crest and trough
wavelength the distance between two successive or adjacent crests
waves energy that moves through the ocean; the orbital motion of water
whitecap a mixture of air and water on the wave

Introduction: Waves—Unpredictable Energy

If you have visited Florida's coast, you've observed the motion of the water we call **waves**. Waves seem to come from nowhere, originating from some mysterious point far out on the horizon. The waves roll toward us and the shoreline endlessly, providing us with constant changes in the surface of the water.

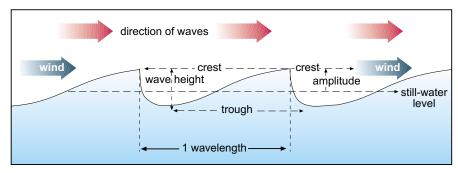
We also know just how destructive the force of the waves can be. Shorelines over a long period of time or even during a few hours of a passing hurricane can be eroded or even nearly wiped away. Coastal towns and cities can be destroyed by the rush of towering waves—and people living in coastal areas may be swept to their death. Like many forces of nature, waves can vary from friendly to menacing. Oceanographers study waves to help us understand their behavior and the way they affect our lives on land.

Making Waves: The Transfer of Energy

The motion or energy of water can be seen with a fishing bobber floating on the surface of a wave. As the wave approaches, the bobber moves up the crest of the wave (diagram 1-3). As the wave moves away (diagram 4-6) the bobber moves down the crest and forward toward its original position.

A *wave* is the orbital motion of water. Although this definition sounds quite simple, the cause of a wave is quite complex. There must be a force, some *form of energy*, that disturbs water and produces a wave's orbital motion. Scientists are unsure how energy is transferred in the form of

waves. Scientists do, however, have some theories to explain this *transfer of energy*. The following experiment describes one of these theories.

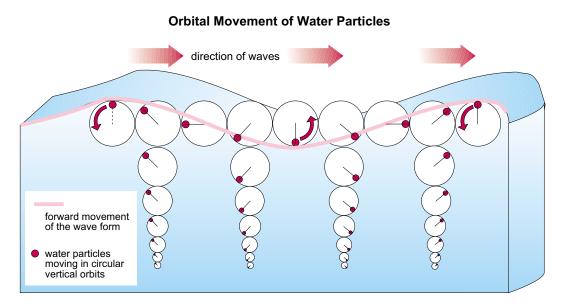

Take a tub or large container of calm water. Now sweep your hand quickly through the container so that you create a wave. You've transferred the energy produced by your body to the water in the form of a wave.

Now repeat this experiment and watch carefully as you pass your hand through the water. Note that as you push aside water along the surface, a space appears just behind—at least momentarily. Water surrounding this space instantly rushes to fill it. But as the water rushes into this space it produces a momentum—a force—that pushes it upward above the surface of the water.

This transfer of energy doesn't stop there. As the water falls back to the surface, it creates another space, which in turn is filled by surrounding water. And, again, the momentum of this rushing water produces another upward force, and so on. The harder you pass your hand through the water, the greater the energy that will be transferred, and the more numerous and powerful will be the waves you will create. Most commonly, energy that is transferred to water originates from wind. Earthquakes and the gravitational pull of the moon also produce waves.

Speaking of Waves

Oceanographers use certain terms when speaking of the features, size, and movement of the ocean's waves. The highest point on a wave is called the **crest**; the lowest point on a wave is called the **trough** (trawf). **Wave height** is the vertical distance between a wave's crest (high point) and its trough (low point). **Wavelength** is the distance between successive or adjacent crests. The term **wave amplitude** refers to the distance from still-water level to a wave's crest.


characteristics of waves

Wave Types: Deep-Water Waves and Shallow-Water Waves

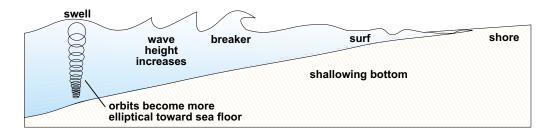
Wave Types. Although *deep-water waves* occur in deep water away from the shore, they have a precise definition. Deep-water waves occur when the water's depth is deeper than one-half the wave's length. This relationship between the water's depth and the wave's length produces a wave that acts in a particular way, as described below.

Although the energy of a deep-water wave moves forward, the water it affects stays nearly in its same place in the ocean. Although this may sound hard to believe or imagine, it's true. As a drop of water moves through a wave, it follows an **orbit**, or circular path. The drop of water will rise and move forward on the wave's front slope until it reaches the crest of the wave. This drop of water will then drop down the wave's back slope and continue until it falls under the wave's trough. As you can see from this explanation, waves really refer to *forms of energy* rather than to the water itself.

Water particles move in circular vertical orbits at the surface or beneath waves. As a drop of water moves through a wave, it moves forward on the wave's front slope until it reaches the crest of the wave. This drop of water will then drop down the wave's back slope and continue until it falls under the wave's trough.

In deep-ocean water, these waves, called *swells*, are usually long and low with rounded crests and troughs and evenly curved surfaces. The swells' wavelength, or distance between crests, stays constant.

Shallow-Water


Waves. As waves near the shore, they change in size, shape, and speed. These *shallow-water waves* slow in speed; their wavelength becomes smaller, and their crests rise higher. In other words, as waves approach the shore, they become slower, higher, and

When the depth of the water becomes less than one-half of a wave length, the wave breaks, or splashes onto the shore. When a wave breaks, energy that was stored in the wave is released.

more numerous. The shape of the waves becomes **trochoidal**: Their crests become pointed; their slopes grow steeper, and their troughs flatten. The wave now has begun to make its final roll.

The breaking point of the wave depends on two things: the speed of the water's orbit and the speed of the wave. As the wave climbs higher and moves more slowly, the motion of the water it affects follows an **elliptical orbit**. When the wave's water begins to flow in this oval-shaped path, the wave's crest moves slightly forward. Finally, when the depth of the water becomes less than one-half of a wave's length, the wave *breaks*, or splashes onto the shore. When a wave breaks, the energy stored in the wave is released onto the shore at impact.

Waves do not just break when they are in shallow water. Waves can also break in deeper waters in the open ocean. Steep waves with narrow crests are produced in the open ocean by strong winds. Winds blow the narrow

crests off the wave, creating a **whitecap** on the wave. A *whitecap* is a mixture of air and water on the wave. Whitecaps on the ocean or other large bodies of water are a sign that rough weather is in store.

Another wave that is encountered on the open ocean is a **rogue wave**. A *rogue wave* is a large, single wave with very high crests and low troughs. Rogue waves are very tall and are formed when two or more large waves from a storm merge or when waves meet currents that are going in the opposite direction from them. Rogue waves are dangerous and have caused many ships to be lost at sea.

Types of Breaking Waves

Breaking waves, or breakers, are affected by the shape of the ocean floor near **beaches**. The **plunging breaker** forms as a wave rolls over a steep beach slope. The **spilling breaker** develops along flatter beaches. (Spilling breakers are common along Florida's shallow and flat coast.) You can see the differences between each breaker in the lists below.

Plunging Breaker

- falls into itself
- collapses
- destroys the wave form
- produces a crashing sound

Spilling Breaker

- moves as a line of foam
- moves at the same speed as the wave form
- •quiet wave

Capillary Waves

The smallest waves are **capillary waves**, or ripples, sometimes called *cat's paws*. They measure less than one inch in wavelength and affect only the top inch or so of water, whether they appear in deep or shallow waters. These little waves differ from other wind (or *gravity*) waves in several ways.

1. Larger wind waves are primarily acted on by *gravity*, which pulls the crest back to the water surface. Capillary waves, however, are small enough so that *surface tension* pulls their crest back to the water

surface. (Surface tension is the result of water molecules attracting each other.)

2. Capillary waves have crests that are rounded and troughs that are pointed or V-shaped.

capillary wave - small waves or ripples

Gravity waves have crests that are pointed and the troughs that are rounded.

gravity wave - steep waves

3. Capillary waves stop as soon as the wind stops. Capillary waves start gravity waves, and as more wind energy is transferred to the ocean, gravity waves may travel thousands of miles.

Tsunami: The Ocean's Most Powerful Wave

The most destructive wave in the ocean is caused by an undersea earthquake or volcano. Oceanographers call this wave by the Japanese term **tsunami (soo-NAM-e)**. A tsunami is also called a *seismic sea wave*.

An undersea earthquake or volcanic eruption on the seafloor can cause one of two events. If a huge crack, or fault, forms on the seafloor, gravity will force water into it. If the seafloor is raised by a quake or eruption, gravity will pull the water back down off the newly raised surface. In either event, a series of powerful waves will form and travel away from the center of the quake or eruption.

The crest of each wave in the tsunami can be 100 miles apart. These waves rush at speeds of up to 450 miles per hour and can travel as much as 2,000 miles. In the open sea, a tsunami is only a few feet high and may not be noticed; in shallow water, however, these waves become dangerously high. These fast open sea waves are forced to slow down suddenly as they reach shallower waters, pushing the waves to towering heights. The height of a tsunami can range from 30 feet to more than 100 feet. As these tremendous waves break onto shore, they flood and destroy almost anything in their path.

Waves and Erosion: Wearing Away Shorelines

Waves erode and reshape the shoreline they wash over.

Waves erode and reshape the shoreline they wash over. The rate of shoreline erosion depends upon the type of shoreline, the size and force and of waves hitting the shore, and the number and intensity of storms the shore area receives a year. During storms, wave action increases; therefore, erosion generally increases. For example, the powerful waves of Hurricane Andrew in 1992 sliced away

parts of Florida's beaches and, in some cases, washed away entire beaches and buildings. Erosion that would have taken years occurred in just a few hours.

Under normal conditions, waves may erode the shore at a rate of one to one-and-a-half meters per year. Along the Florida coast, breaking waves constantly erode the sand and soft soil that compose the beaches. During moderate weather, the effects of erosion along the Florida coast are barely visible to the onlooker. Waves may also deposit sand and soft soil to form new shoreline features.

Along shorelines that are composed of rock, for example on the coast of California, erosion works in a different way. When breaking waves hit the shoreline, they chip fragments off of existing beach rock. These small rocks and sand grains are then swept by waves against other rocks on the shore, causing more beach rock to chip. Waves also cause erosion when breaking storm waves force water into the cracks of rock cliffs. The cracks grow larger and larger and, eventually, the pressure breaks the rocks apart. Erosion is also caused by the chemical action of seawater dissolving minerals from rocks. Over time, the rocks will break apart or dissolve completely.

Sea cliffs are steep faces of rock that have been eroded by waves. Eventually, the sea cliff will be worn away, often breaking off large rocks that fall into the sea. The waves will then erode the large rocks into sand.

The buildup of rock and sand at the bottom of the sea cliff form a flat platform called a **terrace**. Terraces help slow down the erosion of sea cliffs. As waves move across the terrace, they slow, striking the cliff with less energy and force. Sea **stacks** are columns of hard rock left behind by the erosion of a sea cliff. Sea cliffs consist of resistant rock and some less resistant rock. In the formation of a **sea cave**, the less resistant

Sea cliffs are steep faces of rock that have been eroded by waves.

rock is eroded away by waves, leaving behind a hollowed-out portion of sea cliff.

Deposits by Waves

Fast-moving waves carry sand, shell fragments, and rock particles across the ocean. As waves slow down and weaken as they approach shorelines, these particles become too heavy for waves to carry. The particles are then deposited offshore or on the shoreline. As a result of waves depositing

Beaches are the shore areas between the high-tide mark and the low tide and usually consist of sand or pebbles.

material in different areas, various shoreline features are formed. These features include beaches, **sand bars**, and **spits**.

Beaches are the shores areas between the high-tide mark and the low tide mark. They usually consist of sand or pebbles. The type of material that composes a beach will depend upon its source. For example, the white sand on the Atlantic Coast of Florida

came from the erosion of the Appalachian Mountains. The black sands on Hawaii's beaches came from the erosion of volcanic rock.

A *sand bar* is an underwater deposition of sand. Sand bars form when longshore currents (currents that move water parallel to the shore) pass across the opening of a bay or cove. The sediments carried within this current are carried inland by waves and deposited. Sand bars that are attached at one end to a mainland or island and extend into open water are called *spits*. You may have walked out on a spit of land that extended into the ocean to fish or look for shells.

Summary

Waves are formed when energy from earthquakes, the gravitational pull of the moon, or, most commonly, the wind, is transferred to the water. Special terminology is used to describe a wave. The highest point on a wave is the *crest*; the lowest point is the *trough*. The vertical distance between these two points is the *wave height*; and the distance between two

The wave action on our beaches causes **erosion** *of the shoreline and changes the shape of the shoreline.*

adjacent waves' crests is the *wavelength*. Wave types include *deep-water* and *shallow-water waves.* Along shallow coastlines *spilling breakers* form, whereas along steeply sloped coastlines *plunging breakers* occur. In open ocean, water *whitecaps* and *rogue* waves can form. Other contrasting waves are *capillary waves* (very small ripples) and *tsunamis*, or seismic waves, which are the largest and most destructive waves.

The wave action on our beaches causes *erosion* of the shoreline and changes the shape of the shoreline. The wearing away of the coast can create *sea cliffs, terraces, sea stacks,* and *sea caves.* Erosion is countered by waves depositing sand and pebbles that form *beaches, sand bars,* and *spits.*

Circle the letter of the correct answer.

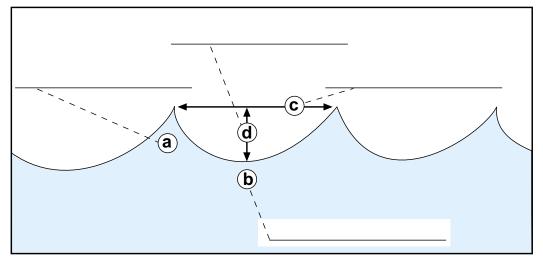
- 1. Waves are created by some form of ______ that disturbs the water.
 - a. chemical
 - b. energy
 - c. wave
 - d. trough

2. The ______ is the highest point of a wave.

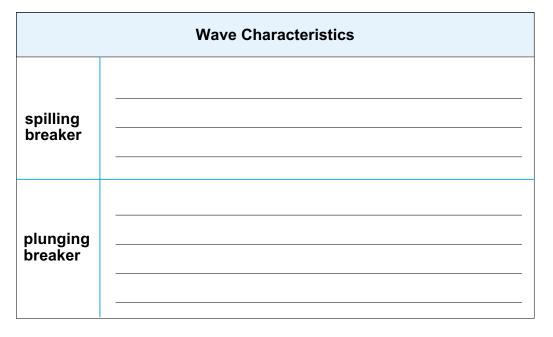
- a. wavelength
- b. amplitude
- c. crest
- d. trough
- 3. The trough is the _____ part of a wave.
 - a. biggest
 - b. widest
 - c. highest
 - d. lowest
- 4. The distance from still-water level to a wave's crest is called the wave ______.
 - a. amplitude
 - b. crest
 - c. trough
 - d. length
- 5. The ______ is the vertical distance between the trough and the crest.
 - a. energy
 - b. wavelength
 - c. wave height
 - d. momentum

- 6. The distance between two adjacent waves' crests is called the ______.
 - a. trough
 - b. amplitude
 - c. wave height
 - d. wavelength
- 7. As waves approach the shore, they become ______, bigger, and more numerous.
 - a. faster
 - b. slower
 - c. stronger
 - d. deeper
- 8. Shallow-water waves become ______ in shape.
 - a. trochoidal
 - b. oval
 - c. elliptical
 - d. shorter
- 9. Deep-water waves called ______ are long, low, and evenly spaced apart with rounded curves.
 - a. capillary
 - b. seismic
 - c. cat's paws
 - d. swells
- 10. When a wave breaks, the energy that was stored in the wave is ______.
 - a. increased
 - b. decreased
 - c. lost
 - d. released

- 11. The ______ breaker, common in Florida, is a quiet wave.
 - a. elliptical
 - b. crashing
 - c. spilling
 - d. plunging


12. The ______ breaker produces a crashing sound.

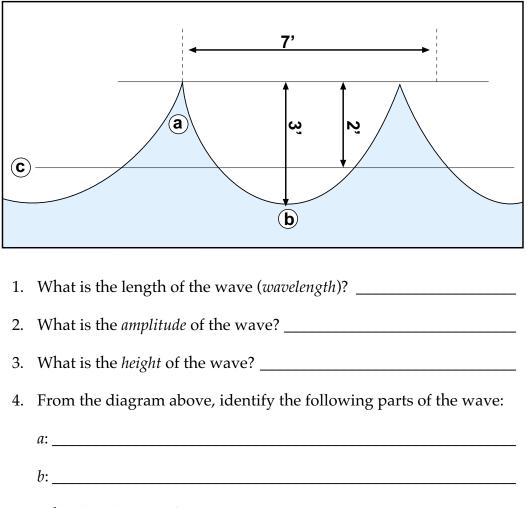
- a. spilling
- b. plunging
- c. shallow-water
- d. capillary
- 13. The smallest waves are ______ waves, or ripples.
 - a. surface
 - b. shallow-water
 - c. tsunami
 - d. capillary
- 14. The most destructive wave in the ocean is the _____, or seismic wave.
 - a. tsunami
 - b. capillary
 - c. deep-water
 - d. elliptical
- 15. Water gets its wave energy from the gravitational pull of the moon, earthquakes, and, most commonly, the ______.
 - a. wind
 - b. Earth
 - c. rotation
 - d. erosion



Answer the following.

1. Label the wave diagram below. Write the correct term by each letter in the diagram.

2. Complete the chart below by filling in the description of each wave.



Answer the following questions using short answers.

How does a tsunami form?
What factors affect the rate of shoreline erosion?
What are the three ways that waves erode shorelines composed
rock?
What features are formed by wave action, or erosion, along a ro
coast?
What are three shoreline features formed by deposits of waves

Use the diagram below to answer the following.

5. What does line *c* refer to?

Lab Activity: About Waves

Investigate:

• Use the Savage Seas Web site below to create small, medium, and large waves by selecting how fast, how far, and how long the winds have traveled.

Materials:

- computer with Internet access
 data table
- Web site: www.pbs.org/wnet/savageseas pencil or pen

Procedure:

- 1. Use the Savage Seas Web site to investigate the variables that form waves. First, enter the following address, www.pbs.org/wnet/ savageseas. Wait patiently for the Web site to appear on the computer screen.
- 2. Click on the ship.
- 3. Click on The Crow's Nest.
- 4. You should now see a list of wave-related items for you to explore. **Click** on **Animations**: **Wave Machine**. The *wave machine* is a simulator that will allow you to create an ocean wave and determine its height. Most ocean waves are formed when the wind blows across the water's surface. The wave height is determined by three factors—wind speed, the **fetch** or distance the wind blows, and the **duration** or length of time the wind blows.
- 5. As you use the variables to create ocean waves, complete the data table on the following page.
- 6. Click on Start to create a wave.
- 7. **Click** on *speed, fetch,* and *duration* variables for creating a small, medium, and large wave. (**Click** on Help as needed.) Note the *height* of the wave created.

- 8. **Enter** *speed*, *fetch*, *duration*, and *height* data for each wave on the table below. **Click** on **Repeat** to view wave animations again. To create a new wave, **Click** on **Variables** to enter new variables.
- 9. After completing the data table below, complete the **Analysis** section of the lab.

wind speed	fetch	duration	wave height
small wave knots (use the smallest variables possible)	nautical miles	hours	feet
medium wave knots (use the medium variables)	nautical miles	hours	feet
large wave knots (use the largest possible variables)	nautical miles	hours	feet
create a wave knots (small speed, long fetch, short duration)	nautical miles	hours	feet
create a wave knots (high speed, short fetch, long duration)	nautical miles	hours	feet
create your own waveknots	nautical miles	hours	feet

Complete the following **data table** for each wave you simulate.

Analysis:

Use the data table to assist you in determining the answers to the following.

1. State the wind conditions necessary for a *large* wave to exist. (Be

sure to include all three wind factors in your response.)

2.	State the wind conditions necessary for a <i>small</i> wave to exist. (Be
	sure to include all three wind factors in your response.)
3.	Define <i>wind fetch</i>
4.	Define <i>wind duration</i>
5.	Describe how waves are formed
6	
6.	What three factors determine wave height?

Wave Descriptions:

Small Waves

1. Describe (or draw below) the appearance of the wave.

- Describe what happens to the ship as a wave of this magnitude passes the ship.
- 3. Is the wave generated under the variables considered dangerous?

Why or why not?_____

Medium Waves

4. Describe (or draw below) the appearance of the wave.

5. Describe what happens to the ship as a wave of this magnitude

passes the ship. _____

Is the wave generated under the variables considered dangerous?
 Why or why not?

Large Waves

7. Describe (or draw below) the appearance of the wave. _____

8. Describe what happens to the ship as a wave of this magnitude

passes the ship. _____

9. Is the wave generated under the variables considered dangerous?

Why or why not?_____

Use the list below to write the correct term for each definition on the line provided.

crest elliptical orbit orbit plunging breaker rogue wave	tro tro	villing breaker ochoidal ough ave amplitude	wave height wavelength waves whitecap
	_ 1.	a mixture of air and	l water on the wave
	_ 2.	a large single wave and low troughs	with very high crests
	_ 3.	curved path around	l a center point
	_ 4.	the distance between two successive or adjacent crests	
	_ 5.	an oval-shaped pat	h around a center po
	_ 6.	energy that moves orbital motion of w	through the ocean; th ater
	_ 7.	highest point on a v	vave
	_ 8.	the vertical distance trough	e between crest and
	_ 9.	wave that collapses form as it enters sha	and destroys the wa allow water
	_ 10.	distance from still-v crest	water level to a wave
	_ 11.	lowest point on a w	vave
	_ 12.	form of a wave hav steep slopes, and fla	01
	_ 13.	wave that moves as enters shallow wate	s a uniform line as it er; a quiet wave

Match each definition with the correct term. Write the letter on the line provided.

1	. a large wave with a long wavelength; usually produced by an undersea earthquake or	A.	beach
	volcanic eruption	В.	capillary waves
2	 shore area of a body of water covered by sand or pebbles; area between high-tide mark and low tide mark 	C.	sand bar
3	 a flat platform of rock and sand at the bottom of a sea cliff 	D.	sea cave
Z	 small waves or ripples on the surface of the water 	E.	sea cliffs
5	5. sand bars attached to a mainland or island that extend into open water	F.	sea stacks
6	5. underwater deposition of sand	C	anita
7	7. a hollowed-out portion of rock that has been eroded by waves	G.	spits
8	 columns of hard rock left behind by the erosion of a sea cliff 	H.	terrace
	steep faces of rock that have been eroded by waves	I.	tsunami

Unit 5: Tides

Unit Focus

This unit illustrates the forces that generate tides. Students will investigate how the tides change daily and the impact of tides on marine organisms.

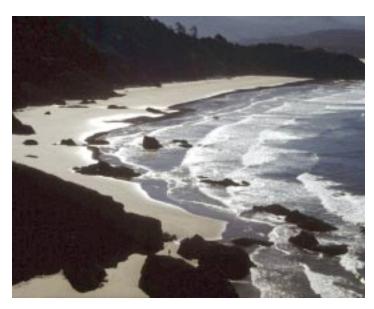
Student Goals

- 1. Define tides.
- 2. Explain the forces that cause tides to occur.
- 3. Describe the differences in tides around the world.
- 4. Explain how tides influence the survival of marine organisms.

Vocabulary

Study the vocabulary words and definitions below.

diurnal tide	a tide that has one high-water level and one low-water level per day
ebb tide	water level or tide at its lowest point
estuary	mouth of a river or bay where fresh water and saltwater mix; the part of the river where its current meets the ocean's tide
flood tide	tide at its highest point
intertidal zone	the area between high tide and low tide; also called the <i>littoral zone</i>
marigram	a graphic record of the rise and fall of the tide in the form of a curve
mixed tide	a tide that has two high-water levels and two low-water levels per day with extreme differences between the heights of the two high and/or the two low- water heights
nadir	the point on Earth's surface farthest from the moon
neap tide	tide occurring at the first and third quarters of the moon when the sun, Earth, and moon form a right angle; this produces tides with a low tidal range
phase	a stage in a process of change or development; may occur in regular cycles



predict	. to tell in advance
rhythm	. movement with regular recurrence or repetition
semidiurnal tide	. a tide that has two high-water levels and two low-water levels per day with little difference between high- and low- water heights
spring tide	. tides occurring at the new and full moon when the sun and moon are in a straight line with each other; produces the greatest tidal ranges between high water and low water
tidal bore	. a sudden rise in water height caused by tides moving rapidly inland from the mouth of a river; a wall of water
tidal bulge	. a concentration of water due to the pull of the moon; occurs on the two sides of the Earth closest to and farthest away from the moon
tidal range	. difference between heights of successive high and low waters
tide	. the rhythmic rise and fall of ocean water
tide pools	. pockets of water formed on uneven shores by outgoing tides
zenith	. the point on Earth's surface closest to the moon

Introduction: Tides—The Rise and Fall of Ocean Water

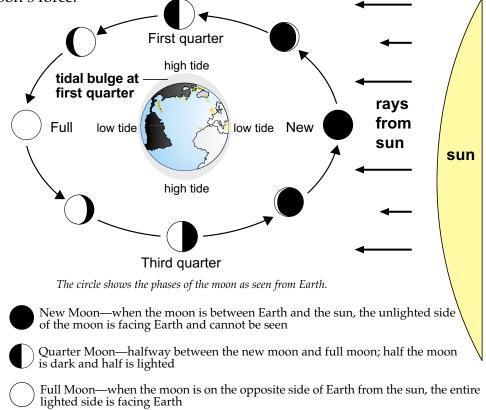
Thousands of years ago sailors and beachgoers began to notice the **tides**, or the rise and fall of the sea around the edge of the land. They put their observations to practical use. The sailor discovered that his beached ship would float when the tide began to rise. When the tide lowered, more of the coastline became exposed and left edible plants and animals easy prey for those who gathered food. Observers of the sea also noticed that changes in the tide followed a regular **rhythm**. They began timing and

When the tide lowers, more of the coastline is exposed.

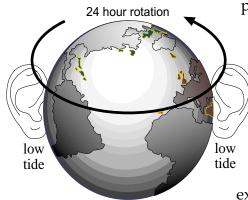
measuring tidal changes and eventually were able to **predict** their regularity.

On most coastlines, observers noticed two high tides and two low tides occurring daily. Early observers must have been puzzled by the fact that the different tides occurred at different times each day. By 350 B.C., the famous Greek scholar Aristotle had discovered the link

between the change in tides and the **phases** of the moon. But it was not until a few hundred years ago when Sir Isaac Newton (1642–1727) discovered the relationship between the moon's gravitational pull and the ocean's shifting tides that we began to understand what causes tides.

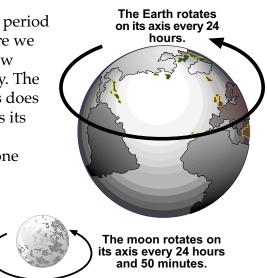

Causes of Tides: The Moon's Gravity

We're all familiar with the tale of Sir Isaac Newton sitting under a tree when a ripe apple fell on the noted scientist's brilliant head. The tale is a simple demonstration of Earth's *gravitational force*. Larger bodies of mass such as the Earth, sun, and moon—exert a pull on smaller objects. We remain firmly rooted on Earth because of gravity. Earth remains in orbit because of the sun's gravitational pull, and the moon remains in orbit because of Earth's gravitational pull.


Tides are also the result of gravitational pull. Both the sun and the moon are large enough in mass to literally "pull" on the Earth's oceans. Because the sun is so far away from Earth, its pull in the oceans is less than half the pull of the moon.

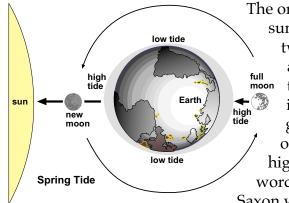
To understand why tides change, imagine the following illustration. Let a ball or sphere represent Earth, and a slightly smaller sphere represent the moon. Begin to rotate Earth, imagining that our planet makes a complete rotation each 24 hours. You'll notice that Earth is continually presenting a different "face" to the moon. The moon exerts its strongest pull on the center, or nose, of this constantly changing face. The point of Earth closest to the moon is called the **zenith**; the point farthest from the moon on the other side of the Earth, is called the **nadir**. At Earth's zenith, there is an upswelling of water known as a **tidal bulge**. As the Earth rotates, the face changes, and so does the location of the nadir, zenith, and the tidal bulge. Although the ocean or gulf nearest you may never be exactly at the Earth's zenith, it, like all waters on the Earth's face, is raised by the moon's force.

Remember, however, that there are usually two high tides and two low tides daily. Thus far we've explained why the beach nearest you experiences one high tide. What causes the other high tide? Surprisingly, the other high tide occurs when the ocean or gulf nearest you is at its furthest point from the moon or when it is at the back of Earth's face. At that point, a phenomenon called *centrifugal force* pulls water away from the Earth. Just as Earth and the moon exert a pull on one another, each is also pulled equally away from one another by the force of their rotations. Centrifugal force keeps Earth and the moon from colliding and exerts a

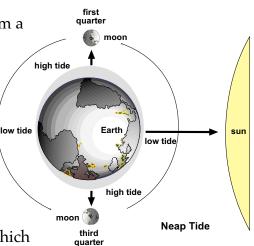


pull on Earth's water farthest from the moon.

The Earth always shows a "face" to the orbiting moon and always hides a backside of this face. To complete our image, imagine two "ears" on either side of the face. When the ocean or gulf reaches each ear—two times every 24 hours—it experiences a low tide.


The Tidal Day: 24 Hours and 50 minutes

Not until we understood the cycle or period of the moon's orbit around Earth were we able to explain why high tides and low tides occur at different times each day. The moon rotates in the same direction as does Earth. The moon, however, completes its orbit at a slower speed than Earth. Consequently, it will take the moon one Earth day (24 hours) plus an extra 50 minutes to reach the same position that it occupied yesterday above your nearby coastal waters.

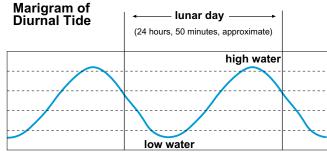


Spring and Neap Tides: Extra High and Low Tides

The orbits of Earth, the moon, and the sun place them in a straight line twice a month—at the full moon and new moon. In this alignment, full moon the moon and sun work together in creating the strongest gravitational pull on Earth's oceans. This super-pull produces a higher tide called a **spring tide**. The word *spring tide* comes from the Anglo-Saxon word *springen*, meaning to *jump up*.

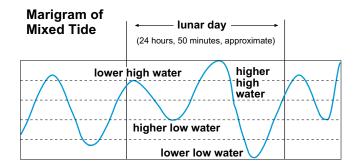
When Earth, the moon, and the sun form a right angle with the Earth at its intersection, the gravitational pull on the ocean is at its weakest. This weaker tide is called a **neap tide** and also occurs twice a month during the first and third quarters of the moon.

Types of Tides


Along some coastlines there are coastal bays and channels. Unlike the ocean, which is nearly equal in its width and length, bays

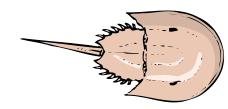
and channels are long and narrow. This shape alters the incoming tide. It may increase or decrease the height of the ocean's tides. In addition, differences in coastlines and seafloor topography also alter the tides.

Bays, channels, and **estuaries** often have a wide **tidal range**, or the difference between the heights of a consecutive high tide (**flood tide**) and a low tide (**ebb tide**). They have higher ranges than other coastal formations because a lot of water must go in and out of a small area. In estuaries, the tidal range can be extremely high. The largest tidal range known in the world occurs in the Bay of Fundy. Water levels in the Bay of Fundy can range over 50 feet at times. High rock walls and narrow passages force the water higher, creating higher tides. When the wave front is a steep wall of turbulent water, it is called a **tidal bore**. Some adventurous people have been known to surf this wall of water! Some scientists and engineers are studying tidal bores for their potential use in generating electrical power.


Although most bodies of water have two high and two low tides daily, there are exceptions. Some places in the Gulf of Mexico (off the West Coast of Florida) have only one high tide and one low tide each day. Such tides are called **diurnal tides** and are also common along the coasts of Vietnam and China.

Most locations in the world experience little or no difference between their two high- or low-water heights. In a waterway such as the Mediterranean Sea, there is practically no difference between the heights of two high and low tides. This type of tide is called a **semidiurnal tide**. Most tides along the East Coast of the United States and around the Atlantic Ocean are *semidiurnal*.

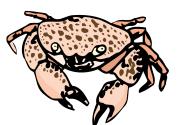
The **mixed tide** has two high-water levels and two low-water levels each day but with extreme differences between the heights of the two highand/or the two low-water heights. Tides along the Pacific Coast of the United States and many Pacific Islands have *mixed tides*.


You can determine the type of tide in a particular area by plotting the times and heights of the tides. This type of graphic record is called a **marigram**.

Tidal Influences: The Highs and Lows of Marine Organisms

The ocean's shifting tides present both benefits and hardships for organisms living near the coastlines in the **intertidal zone**. The intertidal zone, also known as the *littoral zone*, is the area between high tide and low tide. At high tide, many areas are covered by water, and at low tide the areas are exposed to the air. This causes changes in temperature, humidity, and the salinity of the seawater these organisms live in. Organisms that cannot adapt cannot survive the changing environment.

Many organisms have evolved to use the changes in tides for their own benefit and depend upon the tides for their survival. For example, the horseshoe crab's life cycle relies on the rhythm of the tides. In May and June, large numbers of horseshoe crabs gather in the shallow estuary areas


along the Atlantic and Gulf coasts to mate. The horseshoe crabs wait in the shallow waters for a new or full moon. When the full or new moon arrives, the tide is at its highest, and the horseshoe crabs come ashore in male and female pairs. The smaller male horseshoe crab typically will hitch a ride onshore attached to the larger female crab's back. The female horseshoe crab has a cluster of eggs on her abdomen which is fertilized

The horseshoe crab's life cycle relies on the rhythm of the tides.

externally by the male horseshoe crab. The female crab deposits the fertilized eggs in a nest she has hollowed out in the sand. At the time of the next high tide, usually a month later, the eggs hatch and the young move back into the ocean. Horseshoe crabs have developed a natural cycle that matches the phases of the moon and lay their eggs at the time of month when their offspring are most likely to survive. Do you know of any other marine organisms that depend upon the tides for mating or survival?

Small creatures such as crabs live in tide pools at low tide.

Outgoing tides do not always carry back all of the water from incoming tides. If the ground near the shore is not smooth, pockets of water can be trapped, forming **tide pools**. Tide pools are often found on rocky coasts, marshy areas, or sandy beaches. Small creatures such as crabs, fish, and sea urchins live in these pools at low tide. These animals must be able to withstand high temperatures and salinities during low tide.

Summary

Gravitational pull by the moon and sun produces tides, or changing levels of water, in Earth's oceans. These tides are really long waves that rise and fall according to their position in relationship to the moon and, to a lesser degree, from the sun. As the Earth and moon rotate, different regions of the ocean rise and fall as they move nearer and farther away from the moon and the sun. This constant shift in water elevation will periodically expose some coastlines and their organisms to air and change the chemistry of coastal waters. Organisms must be adapted to these constant changes in temperature, humidity, and salinity if they are to survive. Tides are important to marine life. The daily change of tides allows for nutrients to flow from an estuary to the open ocean. Tides also transport marine organisms from one location to another and provide many marine organisms with a mechanism for reproduction. Tides create the environmental conditions of marine organisms that live in the harsh *intertidal* zone between the high-water mark and the low-water mark.

Use the list below to complete the following statements. **One or more terms will be used more than once.**

	50 bulge diurnal ebb	flood marigram mixed moon		semidiurnal spring tidepools two			
1.	Long ago people noticed that there was a regular rhythm to the						
	changes in th	e level of the		·			
2.	In most locati	ons there are		high tides and			
		lo	w tides every	/ day.			
3.	Tides are caus	sed by the gravit	ational pull o	of the			
	on the Earth.						
4.	Every day the	e tides occur abou	ut	minutes			
	later than the	day before.					
5.	The tidal		is res	ponsible for a high tide.			
6.	The <i>zenith</i> is t	he point on Eartl	h closest to th	ne moon; the			
		is	the point on	Earth farthest from the			
	moon.						
7.	When the Ear	th, moon, and su	ın are in a str	aight line,			

_____ tides, or extra-high tides, occur.

8. When the Earth, moon, and sun form a right angle,

_____ tides, or extra-low tides, occur.

- 9. In the Bay of Fundy the tidal ______ is extremely high.
- 10. The type of tide with very little difference between its two high- and two low-water levels is a ______ tide.
- 12. Along the Pacific Coast of the United States,

______ tides occur that have extreme differences

between the two low-water levels and/or two high-water levels.

- 13. At low tide, crabs, fish, and sea urchins may be found in
- 14. High tides are also known as ______ tides, while

low tides are called ______ tides.

15. A ________ is a graphic record of rise and fall of

tides.

Lab Activity 1: Predicting Time of Tides

Investigate:

• Predict the times of tides at a particular location.

paper

Materials:

٠

- tide chart from newspaper
 - pencil

Procedure:

- 1. Use a newspaper to find the times that tides will occur on a particular day.
- 2. Add 50 minutes to each tide to predict the time of the tides tomorrow. (Remember, there are only 60 minutes in an hour.)
- 3. Compare your calculated times with those in the next day's newspaper.

Tomorrow's Tides					
High	Low	High	Low		
St. N	larks	Carrabelle			
3:41 a.m. 3:58 p.m.	9:46 a.m. 10:05 p.m.	4:06 a.m. 4:24 p.m.	10:11 a.m. 10:38 p.m.		
Shell	Point	Alligate	or Point		
3:46 a.m. 4:03 p.m.	9:49 a.m. 10:09 p.m.	3:33 a.m. 3:50 p.m.	9:57 a.m. 3:50 p.m.		
Apalao	chicola				
5:31 a.m. 5:49 p.m.	12:25 a.m. 12:24 p.m.				
	\sim		\frown		

Lab Activity 2: Plotting Times and Heights of Tides

Investigate:

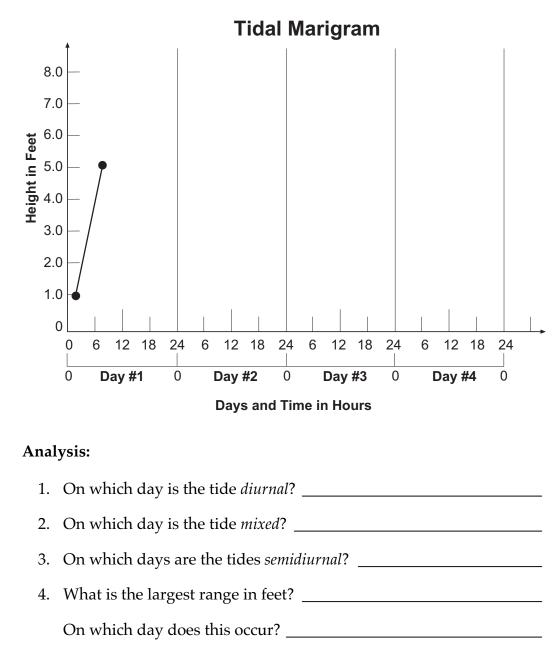
• Plot the times and heights of tides on a marigram.

Materials:

- graph
- pencil

Procedure:

- 1. The table below shows the times and heights of tides on four successive days. Using the information in the table, complete the marigram on the following page. Be sure to show the times and heights of all the tides listed in the table.
- 2. Connect all the points with a line.
- 3. Use your graph to answer the questions.


Tide Predictions				
Day	Ti	Height		
	Hour*	Minutes	Feet	
	01	30	1.0	
#1	07	45	5.1	
	16	00	1.0	
	20	30	5.0	
	02	00	2.0	
#2	08	15	5.5	
#2	14	30	1.0	
	21	00	6.0	
	04	30	1.0	
#3	10	00	3.0	
#0	16	15	1.0	
	22	30	3.1	
#4	05	00	1.0	
#4	17	30	8.0	

* 24-hour day in military time

`___

200

For help, the first two tides on Day 1 have been plotted for you.

What is the smallest range in feet? ______
 On which day does this occur? ______

Match each definition with the correct term. Write the letter on the line provided.

1	. to tell in advance	A.	nadir
2	. the point on Earth's surface closest to the moon		
3	 tide occurring at the first and third quarters of the moon when the sun, Earth, and moon form a right angle; this produces tides 		neap tide
	with a low tidal range	Ċ.	phase
4	 tides occurring at the new and full moon when the sun and moon are in a straight line with each other; produces the greatest tidal ranges between high water 	D.	predict
	and low water	E.	rhythm
5	 a concentration of water due to the pull of the moon; occurs on the two sides of the Earth closest to and farthest away from the moon 	F.	spring tide
6	. the point on Earth's surface farthest from the moon	G.	tidal bulge
7	 a stage in a process of change or development; may occur in regular cycles 	H.	tide
8	. movement with regular recurrence or repetition		
9	. the rhythmic rise and fall of ocean water	I.	zenith

Use the list below to write the correct term for each definition on the line provided.

diurnal tide ebb tide estuary flood tide	marig mixed		tidal bore tidal range tide pools
	1.	pockets of wat uneven shores	er formed on by outgoing tides
	2.		d of the rise and fall of form of a curve
	3.		one high-water level vater level per day
	4.	and two low-w extreme differe	two high-water levels vater levels per day wit ences between the heigh n- and/or the two low-
	5.	and two low-w	two high-water levels vater levels per day wit between the two high heights
	6.	tide at its lowe	st point
	7.	tides moving r	n water height caused l apidly inland from the er; a wall of water
		tide at its high	est point
			veen heights of n and low waters
	10.	mouth of a rive water and salt	er or bay where fresh water mix
	11.	the area betwe	en high tide and low ti

Unit 6: Ocean Currents

Unit Focus

This unit focuses on forces that produce ocean currents. Students will also examine the impact ocean currents have on coastlines and marine life.

Student Goals

- 1. Identify currents of the world's oceans.
- 2. Understand that currents move in circular paths due to the Coriolis effect.
- 3. Know the role of currents in providing nutrients to marine life.
- 4. Understand how currents shape coastlines.

Vocabulary

Study the vocabulary words and definitions below.

continental slope	the sloping surface between the outer edge of the continental shelf and the ocean basin
convection current	. the movement of a substance caused by differences in its temperature
Coriolis effect	the result of the Earth's rotation, causing a water mass or moving object to flow to the right in the Northern Hemisphere (clockwise) and to the left in the Southern Hemisphere (counterclockwise)
course	. path or direction
current	. movement of water caused by uneven temperatures or winds
equatorial currents	. warm-water currents that flow away from the equator
Gulf Stream	warm-water current that flows from the Gulf of Mexico, around Florida, and up the East Coast of North America
gyres	. circular or spiral patterns; refers to circular motion of major ocean currents
hemisphere	. half of a sphere (ball or globe)
longshore current	current located in the surf zone, running parallel to the shore as a result of waves breaking at an angle on the shore

polar currents	cold-water currents that flow toward the equator
reversing current	the current as it meets land and moves back into the ocean
rip current	strong, narrow current at or near the surface of the shoreline flowing back toward sea
trade winds	powerful winds produced by the Earth's rotation; movement of air toward the equator, from the northeast in the Northern Hemisphere and southeast in the Southern Hemisphere
turbidity current	strong, underwater current of water, sand, and silt that erodes the ocean bottom
upwelling	process by which deep, cold, nutrient- rich water is brought to the surface, usually by water currents or winds that pull water away from the coast

Introduction: Ocean Currents—Moving Streams of Water

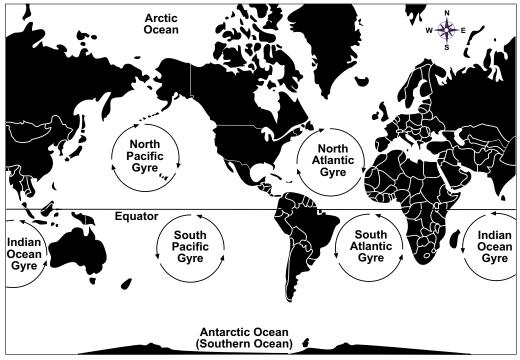
The previous unit discussed how the *gravitational pull* of the moon and sun cause the Earth's oceans to *rise* and *fall*. The sun also influences streams of water in the oceans to flow across the Earth's surface or move *horizontally*. These moving streams of water are called **currents** and follow a regular **course**, or path, as they travel the ocean. *Currents* can move along the surface of the ocean and at any depth below the surface.

The Ocean's Surface Currents: Blown by the Wind, Moved by Temperatures

The friction of the wind, or moving air, against the surface of the water set the water in motion.

You've probably noticed the surface of the ocean set in motion by the wind when you've visited the coast. What you're witnessing is the transfer of energy from the wind to the surface of the ocean. The friction of the wind, or moving air, against the surface of the water set the water in motion. The greater the wind, the greater the friction, and, consequently, the stronger the surface currents. In short, on a

windy day, the sea will be much choppier than on a calm day. (The next time you see the wind's effect on the ocean's surface, consider this: Wind friction is passed from the surface water to the water levels below. In some places, this transfer of energy continues, level by level, to 200 meters below the surface!)


Our study of the surface currents in the ocean begins with a discussion of wind. You may remember from your previous studies in science that some parts of the Earth receive more direct sunlight than other parts. Heated air expands and rises, while colder, more dense air sinks. If the Earth did not

rotate on its axis, the air along the sun-drenched equator would heat and flow towards the north and south poles. At the poles, air would cool, become very heavy, and flow back to the equator where it would be heated again. The winds would move northerly and southerly along the Earth.

The Earth rotates and this feature produces a regular but complex wind pattern in the atmosphere. The result of the Earth's rotation is known as the **Coriolis effect**. In each hemisphere, the Coriolis effect produces three wind systems, or moving bands of air. These moving bands of air, called the *polar easterlies*, the *westerlies*, and the **trade winds** (which are easterlies), move the ocean's currents. The winds are named for the direction from which they come.

Air along the equator moves north or south. The waters move, consequently, in giant circular patterns called **gyres**. There are five major gyres or circulating patterns in the world's oceans. In the Northern **Hemisphere**, these gyres move in a *clockwise* direction, and in the Southern Hemisphere they move in a *counterclockwise* direction.

gyres of the world

The waters of the Earth have different temperatures. Because the sun is closest to the equator, currents at the equator are warm, whereas currents at the poles are cold. This difference in water temperatures creates **convection currents** in the ocean waters. The colder, more dense water

sinks, and the warmer, less dense water rises above it. **Equatorial currents** carry warm water away from the equator toward the poles. **Polar currents** carry cold water away from the poles toward the equator.

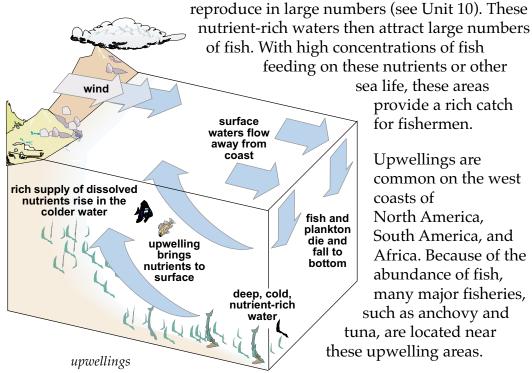
currents of the world

Florida's Currents: The Gulf Stream

One of the most familiar currents to us in Florida is the **Gulf Stream**. The Gulf Stream is a warm-water current that flows from the Gulf of Mexico, around Florida and up the East Coast of North America. Its waters help to warm the water temperature of the eastern North Atlantic Ocean, making the water relatively warm (even in the winter) and moderating our climate.

Turbidity Currents: A Slide in the Ocean

The continental shelf and the slope sometimes have deep cuts that form valleys or canyons. Scientists hypothesize that these valleys and canyons were formed by **turbidity currents**. These are currents that are very thick and carry huge amounts of sediment down the **continental slopes** (see Unit 7). Turbidity currents form when landslides of sediments are pushed down the continental slopes. The landslides are possibly triggered by earthquakes. The speed at which the sediment slides down the continental slope, forming deep canyons.



Making Use of the Currents

For hundreds of years we've observed the currents and used them to our advantage. For example, sailors have long used the currents to decrease their travel time. By moving in the same direction as fast-moving currents, ships save time and reduce fuel use. In some instances, traveling a longer distance along the currents take less time and fuel than traveling a more direct route.

Ships coming to the New World from Europe knew about currents and used them to their advantage. Ponce de Leon noted in 1513 the difficulty of sailing against the Gulf Stream along the coast of Florida. In 1770 Benjamin Franklin used sailors' records to draw simple maps of the currents in the North Atlantic Ocean, including the Gulf Stream.

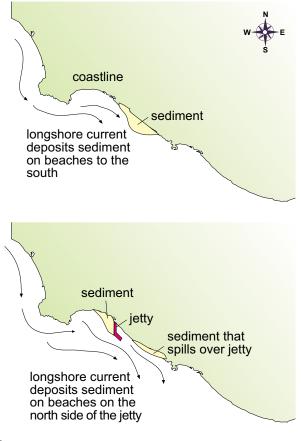
Fishermen also use the currents to increase their catches. Ocean or wind currents can cause the surface water to flow away from the coast. Then a process called **upwelling** takes place: Deep, cold, nutrient-rich water—an upwelling—is brought to the surface by coastal currents. This upwelling replaces the surface water that has flowed away from the coast because of a water current or the wind. Whenever this occurs, a rich supply of dissolved nutrients rises in the colder water. *Plankton* (small, sometimes microscopic organisms that float or drift) use this nutrient source and

Currents and the Availability of Nutrients

Marine and plant life are typically very abundant along coastal and shallow waters. Do you know why this is so? You may already know that bacterial decay occurs on the ocean floor and *photosynthesis* (the process plants and algae use to make their own food using the energy in sunlight) occurs in the surface waters of the ocean. Bacterial decay provides nutrients for marine plants and algae. Plant life in the surface waters provides food for marine life. But in the open ocean, most of the nutrients sink to the bottom of the ocean. Nutrients located at the ocean bottom are not available to the plant life at the ocean's surface. Therefore, a smaller amount of *phytoplankton*, or plant plankton, are produced in the open oceans (see Unit 9). How do you think limited phytoplankton production affects marine life in the open ocean? Upwelling in deep water brings important nutrients that have sunk to the ocean bottom back to the surface. Once these nutrients are at the ocean's surface, they become available to the phytoplankton. Upwelling and the availability of light play an important role in shaping *ecosystems* (systems formed by the interaction of a community of organisms with their environment) and the productivity of the ecosystem.

Beach Currents: A Possible Danger to the Ocean Swimmer

Not all currents are large ocean currents. Smaller currents occur near the shore. A **reversing current** is the movement of the water back toward the ocean. Most reversing currents have the same force as the wave striking the beach. However, when these currents are stronger, they can be dangerous and have caused swimmers to drown.


One of these dangerous reversing currents is the **rip current**. A rip current is a strong, narrow flow of water caused by water returning to the ocean after breaking on a shoreline. The speed and strength of this current depends on the wave and the steepness of the beach.

If you find yourself trapped in a rip current, don't panic and do not fight the current. Let the current carry you out a short distance until the pull has decreased. You can then swim to the beach, but do so diagonally to avoiding swimming into another rip current.

Another beach current is the **longshore current**. This type of current runs parallel to, or along, the beach. Longshore currents are formed when waves hit the beach at an angle. When you are carried away from your towel and beach umbrella while swimming, you have probably been caught in a longshore current. Do not try to swim against strong longshore currents. Simply swim or float directly to shore, then walk back to your starting point.

Longshore currents are responsible for the mass movements of sand and erosion along the beach. Many people try to stop longshore sand movement by building jetties. A *jetty* is a projecting structure made of rocks, concrete, or wood that protects

longshore currents

the beach from the current or tide. The longshore current still moves the sand, but with a jetty in place, the sand is trapped. Eventually, however, the sand will spill over to the other side of the jetty. Although jetties can't stop longshore movements or erosion, they can slow it down.

Summary

Ocean currents are movements in the water caused by Earth's rotation (Coriolis effect), wind systems, and differences in water temperature (convection). Currents affect the movement of ships and marine life in the ocean, and carry warm water to the poles and cold water to the equator. You may have experienced currents along the beach, such as rip or longshore currents. These can cause harmful erosion and can be dangerous to a swimmer who gets caught and carried away from land.

Use the list below to complete the following statements. **One or more terms will be used more than once.**

convection counterclockwise currents Equatorial gyres	longshore Northern polar reversing	rip turbidity upwellings winds
---	---	---

- 1. Moving streams of water are called ______.
- Ocean currents are caused primarily by ______
 blowing across the Earth.
- 3. _____ currents are warm-water currents that flow away from the equator.

4. There are five major ______, or circular

patterns of water movement, in the world's oceans.

5. Ocean currents move clockwise in the

_____ Hemisphere and

_____ in the Southern Hemisphere.

6. A strong, narrow surface current that can be dangerous is called a

_____ current.

7. ______ are good for fishermen because they bring

cold, nutrient-rich water to the surface, which attracts fish.

- If you are in the water and notice that you have drifted parallel to the beach and away from your towel, you are probably in a ______ current.
- 9. A ______ current forms when landslides of sediment, possibly triggered by earthquakes, erode the continental slope, forming deep canyons.
- 10. The movement of the water back toward the sea is called a

_____ current.

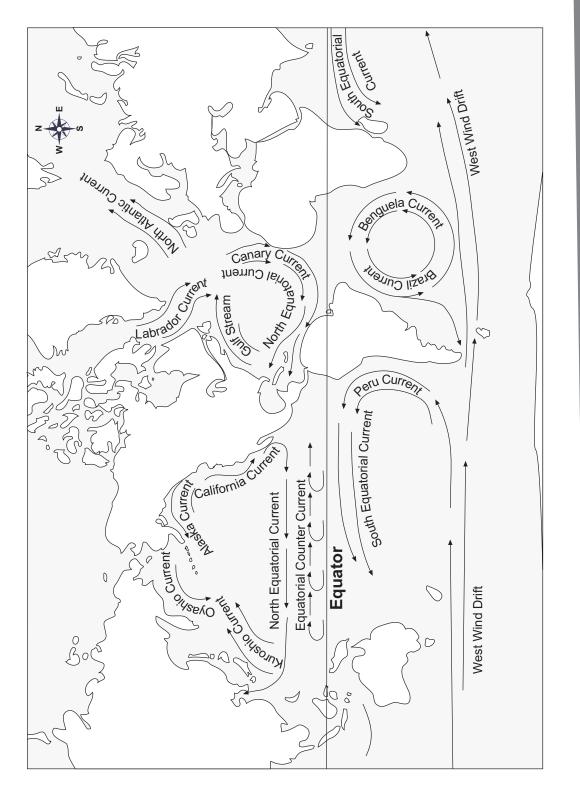
- The polar easterlies, westerlies, and trade ______
 move the ocean currents.
- 13. _____ currents carry cold water away from the poles toward the equator.

Match each **description** *with the correct term. Write the letter on the line provided.*

A. convection current 1. deep, cold, nutrient-rich water brought to the surface by coastal currents B. current 2. a fast-moving avalanche of sand or silt rushing down a slope C. equatorial currents 3. current that meets land and moves back into the ocean D. Gulf Stream 4. a moving stream of water E. gyres 5. carry cold water toward the equator F. longshore currents 6. giant circular patterns in the ocean G. polar currents 7. carry warm water toward the poles H. reversing current 8. runs parallel to the beach 9. dangerous reversing current at I. rip current or near the shoreline J. turbidity currents 10. warm-water current off the East Coast of North America K. upwelling 11. water movement caused by differences in water temperature

Lab Activity 1: Ocean Currents

Investigate:


• Study major ocean gyres and the movements of water masses.

Materials:

- world map on page 149, globe, or atlas
- colored pencils

Procedure:

- 1. Assume that all equatorial currents and all currents moving away from the equator to the poles are warm. Color these **red**.
- 2. Assume that all polar currents and all currents moving away from the poles to the equator are cold. Color these **blue**.
- 3. Label the *seven continents* on the map on page 149.
- 4. Label the North Atlantic, South Atlantic, North Pacific, South Pacific, Indian, Arctic, and Antarctic (also known as the *Southern Ocean*) oceans on the map.

Major Ocean Currents of the World

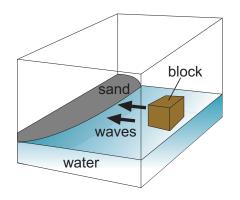
nal	ysis:
1.	In what direction do currents rotate in the Northern Hemisphere
2.	In what direction do currents rotate in the Southern Hemisphere?
3.	What causes this rotation or the currents?
4.	Why do the waters around Florida remain warm in the winter? _
5.	Why does fog often form off the coast of Labrador (East Coast of Canada)?
6.	What is the general rule regarding the presence of warm or cold currents along the coasts?
	Along the East Coast, currents are
	Along the West Coast, currents are
7.	What is the general rule regarding the temperature of currents moving toward and away from the equator?
	Currents moving away from the equator are

8. Refer to the map of major ocean currents on page 149 and in other reference books to complete the chart below. Under *Coastal Area* fill in the name of the nearest country to each current. Under *Temperature* describe each current as warm or cold.

Ocean Currents					
Currents	Coastal Area	Temperature			
1. Gulf Stream					
2. California Current					
3. Peru Current					
4. Brazil Current					
5. Benguela Current					
6. Labrador Current					
7. West Wind Drift					
8. Canary Current					
9. North Atlantic Current					

Lab Activity 2: Currents

Investigate:


• Study the effects of different types of beach currents.

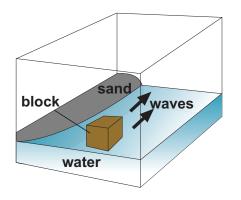
Materials:

- sand
- water
- wooden blocks
- tray
- small pebbles

Procedure: Beach Currents

1. Construct a small sand beach at one end of the tray.

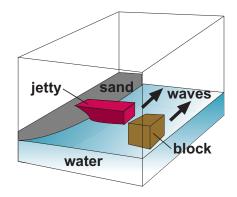
2. Add water to a depth of 1-2 inches. What happened to the beach


when the water was added? _____

	e a small wooden block to generate waves that move toward th
bea	ach.
a.	Describe the beach after the first few waves
b.	Describe the basch after a minute of wave action
D.	Describe the beach after a minute of wave action
c.	What would happen to the beach if it had no additional source
	of sand?

Procedure: Longshore Currents

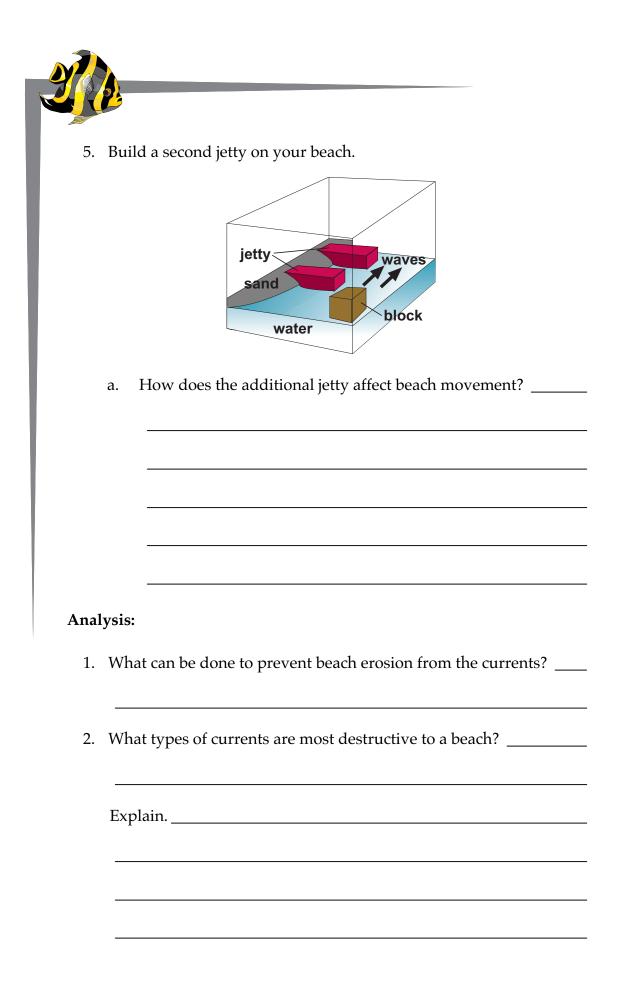
1. Construct a sand beach along one side of the tray.


2. Generate waves with a wooden block along the length of the beach.

a. What happens to the beach as the waves move across? _____

What direction does the beach move? _____ b.

Why? _____


3. Use small rocks or another block to build a jetty sticking out from the beach.

- 4. Generate waves along the beach with the wooden block.
 - a. Describe the shape of the beach after wave action.

b. Will jetties prevent beaches from being moved? _____

Explain. _____

Use the list below to write the correct term on the line provided.

continental slope convection current Coriolis effect course current		equatorial currents gyres hemisphere polar currents trade winds
	1.	half of a sphere (ball or globe)
	2.	powerful winds produced by the Earth's rotation
	3.	cold-water currents that flow toward the equator
	4.	warm-water currents that flow away from the equator
	5.	the movement of a substance caused by differences in its temperature
	6.	the result of the Earth's rotation, causing a water mass or moving object to flow to the right in the Northern Hemisphere and to the left in the Southern Hemisphere
	7.	circular or spiral patterns; refers to circular motion of major ocean currents
	8.	path or direction
	9.	movement of water caused by uneven temperatures or winds
	10.	the sloping surface between the outer edge of the continental shelf and the ocean basin

Match each definition with the correct term. Write the letter on the line provided.

	1.	current located in the surf zone, running parallel to the shore as a result of waves breaking at an angle on the shore	A.	Gulf Stream
	2.	strong, narrow current at or near the surface of the shoreline	В.	longshore current
3	3.	process by which deep, cold, nutrient-rich water is brought to the surface, usually by water currents or winds that pull water away from the coast	C.	reversing current
2	4.	the current as it meets land and moves back into the ocean	D.	rip current
	5.	strong, underwater current of water, sand, and silt that erodes the ocean bottom	E.	turbidity current
(6.	warm-water current that flows along the East Coast of North America	F.	upwelling

Unit 7: The Ocean Floor

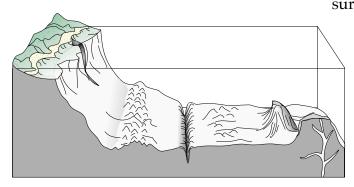
Unit Focus

This unit depicts the topography of the ocean floor and describes how the features of the ocean floor are formed.

Student Goals

- 1. State the features that make up the topography of the ocean floor.
- 2. Explain how the features of the ocean floor are formed.
- 3. Examine a profile of the topography of the ocean floor and label its features.

Vocabulary


Study the vocabulary words and definitions below.

abyssal plains	large, flat regions on the ocean floor
basin	the ocean floor at a depth of more than 4,000 meters
continental shelf	a relatively flat part of the continent that is covered by seawater; lies between the coast and the continental slope
continental slope	the sloping surface between the outer edge of the continental shelf and the ocean basin
guyots (GEE-oze or GEE-oots)	underwater volcanic mountains with flat tops
mid-ocean ridge	a mountain chain that rises from the ocean basins; where seafloor spreading takes place
seamounts	underwater, cone-shaped volcanic mountains
submarine canyons	deep, V-shaped valleys found along the continental slope
topography	detailed charting of the features of an area; heights, depths, and shapes of the surface of an area
trenches	long, narrow cracks in the ocean floor; the deepest parts of the ocean

Introduction: The Ocean Floor—Features Underwater

Using sonar, seismic profiling, satellites, and underwater research vehicles, oceanographers have discovered that the **topography**, or shape of the ocean floor is quite similar to many of the dramatic sights we see on the landforms on Earth's continents. The ocean floor has raised masses of land similar to the Rocky Mountains and large areas of smooth and level

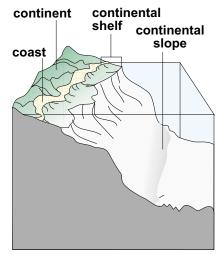
topography of the ocean floor

surfaces similar to the Great Plains. Underneath the ocean's surface, however, we would find canyons that are deeper, mountain ranges that are higher and longer, and plains that are wider and flatter than any landforms on the continents.

Crustal Plate Movement: The Pieces of Earth's Giant Puzzle

Scientists have collected evidence to show that Earth's continents were once one large landmass known as *Pangaea* (pan-JEE-uh). According to German scientist Alfred Wegener's 1915 hypothesis of continental drift, the continents separated over time and, like pieces of a giant puzzle, *drifted* to their present locations.

A theory known as *plate tectonics* suggests that the Earth's outermost layer, or *crust*, is separated into 12 or more large pieces or plates. These plates include the five-mile thick oceanic crust, which lies beneath the oceans. These plates are still moving, and this movement, or friction, between the plates helps explain why volcanoes and earthquakes occur along the plate boundaries.



German scientist Alfred Wegener suggested that at one time all of the continents were one large landmass called Pangaea. This landmass then split apart and broke into two large landmasses called Laurasia and Gondwanaland. These eventually broke apart and over time drifted across the ocean floor until they reached their present positions.

Continental Shelf: Continents under Water

Shorelines do not mark where the continents end; some continents actually extend into the ocean as much as 50 to 65 kilometers. From the shorelines, land begins to slope gently downhill and under water. The edge of the continent that is under water is called the **continental shelf**. Continental shelves were formed as rivers carried tons of particles of sand and soil from the land out to sea. This sand and soil then settled as layers of sediments, or layers of particles of rock and animal remains.

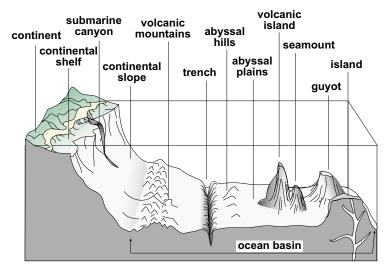
Although continental shelves are usually flat, they differ in their width, or the

The part of the continent that is under water is called the continental shelf.

distance they extend into seawater. The steepness of the land along the coast affects the width of the continental shelf. For example, a mountainous coast will have a continental shelf that is narrow. A low-lying coast will have a long and wide continental shelf.

Layers of sediment and mineral deposits on the continental shelf provide pockets of oil and natural gas—natural resources that are valuable sources of energy. The waters over the continental shelf also provide productive fishing areas.

Continental Slope: The Underwater Cliff


At the edge of the continental shelf is a slope that may vary from steep to gradual known as the **continental slope**. The continental slope separates the continental shelf from the ocean floor.

Continental slopes have many gullies and small valleys. **Submarine canyons**, or deep, ditch-like valleys that have been cut in hard rock, also appear along the slopes. The upper part of submarine canyons, scientists believe, were formed by rivers, and the deeper parts by undersea currents of sand and silt such as *turbidity currents* (see Unit 6). The sediment slows at the bottom of the slope and forms a gentle slope known as the *continental rise*. At the end of the rise is the *ocean* **basin**, which is more than 4,000 meters deep.

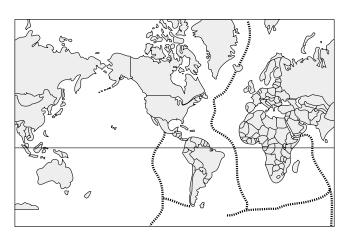
Abyssal Plains: Earth's Largest Plains

The *ocean basin*, or floor, begins at the bottom of the continental slope. Many plains on the ocean basin are larger and flatter than any found on the Earth's surface. They are called **abyssal plains**. Abyssal plains are formed by sediments deposited by turbidity currents and sediments continually falling from the seawater above. The deepest parts of the ocean floor are long, narrow cracks called **trenches**, which have been caused by shifts in the crustal plates. At some points, these trenches slice into the ocean floor more than 10,000 meters deep, and some run as long as 4,500 kilometers. The Marianas Trench in the Pacific Ocean is the deepest spot in the ocean—over 10,911 meters (6.78 miles) deep.

Like the surface of the continents, the landscape of the ocean floor displays a variety of physical features, including mountains, hills, trenches, and plains.

Seamounts and Guyots: Underwater Mountains

Along the ocean floor, often near crustal *plate boundaries*, are underwater mountains called **seamounts**. Seamounts are actually cone-shaped volcanic mountains with steep sides and a narrow summit, or top. Some seamounts rise through the ocean's surface and appear as volcanic islands. Seamounts are most abundant in the Pacific Ocean, possibly because of the activity of plates in the Pacific area.


Many seamounts do not rise to a peak but have a flat top. Flat-topped seamounts are called **guyots (GEE-oze** or **GEE-oots)**. Scientists hypothesize that the seamount tops were above sea level at one time and have been

removed by wave action. The flattened seamounts later sunk below the ocean surface. Scientists believe the sinking of the guyots was caused by the movement of crustal plates.

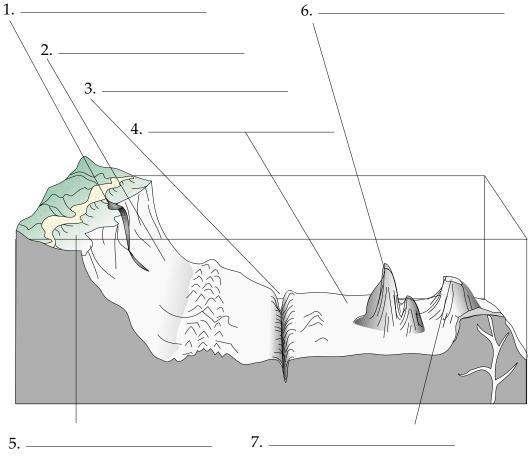
Mid-Ocean Ridges: Underwater Mountain Ranges

The most prominent feature of the ocean basin is the **mid-ocean ridges**. Mid-ocean ridges are underwater mountain ranges. The ridges form a continuous mountain chain from the Arctic Ocean, down through the middle of the Atlantic Ocean, around the tip of Africa and into the Indian Ocean. The chain then continues across to the Pacific Ocean and north to North America. In some areas, the highest peaks of the mid-ocean ranges reach above sea level, forming island chains.

outline of the worlds mid-ocean ridges

Mid-ocean ridges do not form in the same way as mountain ranges on land. Mid-ocean ridges form when molten magma from the mantle flows up to the seafloor. When the lava hits the seafloor, it cools and forms layers, making new crust. This expansion of the Earth's crust is called *seafloor spreading*. The mountain belt located in the Atlantic Ocean is called the *Mid-Atlantic*

Ridge. The mountain belt located in the Pacific Ocean is called the *East Pacific Rise* or *East Pacific Ridge*.


Summary

Continents extend into the ocean as much as 30 to 40 miles. These extensions are called *continental shelves* and are usually flat. They were formed by rivers carrying tons of particles from land to the sea. *Continental slopes* separate these shelves from the *ocean floor*, or basin. The ocean basin has a similar *topography* to that of Earth's land. In fact, many plains on the ocean floor are larger and flatter than any found on Earth's surface. And underwater mountains and mountain ranges can be found throughout the ocean.

Use the list below to label the **diagram** *of the* **ocean floor***. Write the correct term for each part on the line provided.*

abyssal plain continental shelf continental slope guyot	seamount submarine canyon trench
	6

Prac	tice
Ansu	ver the following using complete sentences.
1.	What does the theory of <i>plate tectonics</i> suggest?
2.	How is the ocean-floor topography different from the topography of exposed land areas?
3.	What is the difference between a <i>guyot</i> and a <i>seamount</i> ?
4.	How are <i>mid-ocean ridges</i> formed?
5.	How did the <i>continental shelf</i> form?
6.	How did <i>submarine canyons</i> form?

Use the list below to complete the following statements.

abyssal basin continental shelf continental slope East Pacific Ridge	Mid-Atlantic Ridge mid-ocean ridges Pangaea plates seamounts topography
guyots	topography
Marianas Trench	trenches

- The ______ of the ocean floor is similar to that of the landforms on Earth's continents.
- 2. Earth's continents were once one large, unbroken landmass called
- The plate tectonics theory suggests that Earth's crust is separated into large pieces known as ______.
- 4. The ______ is the part of the continent that is under the ocean.
- 5. The _______ separates the continental shelf from the ocean floor.
- 6. The deepest parts of the ocean floor are long, narrow cracks called

__ .

7. The largest plains on Earth are the _____ plains.

- 8. The ______ in the Pacific Ocean is the deepest spot on the Earth—over 10,911 meters deep.
- 9. The ocean ______, or floor, begins at the bottom of the continental slope.

10. Underwater volcanic cone-shaped mountains are called

_____•

11. Flat-topped seamounts are called ______.

- 12. _____ are underwater mountain ranges.
- 13. The mountain belt located in the Atlantic Ocean is called the
- 14. The mountain belt located in the Pacific Ocean is called the

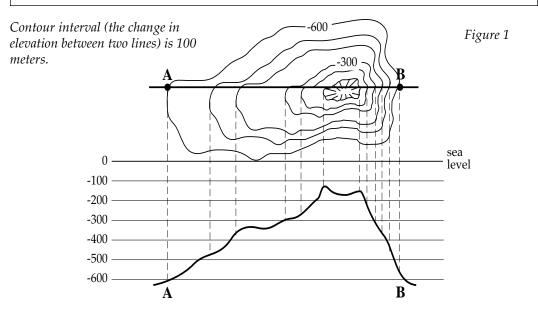
_____·

_ .

Investigate:

• Construct a three-dimensional view of a *bathymetric map* by interpreting data obtained near the mouth of the Columbia River.

Materials:


- sounding data
- carbon paper
- scissors/utility knife cardboard or tagboard
- pencil

glue

• colored markers

Contour Model of the Seafloor

With echosounders, oceanographers have gathered large amounts of data about the ocean floor. How can they arrange this data in a form that is useful? One technique—the *side-view bottom profile* technique—is a series of profiles made into a three-dimensional model which gives a good picture of the bottom. However, the models take a long time to make. They also take up lots of storage space. To overcome these problems, oceanographers make a special contour map. Contour maps show a three-dimensional (length, width, height) surface on a two-dimensional (length and width only) sheet of paper. These special contour maps are called *bathymetric maps*. In this lab, you will have a chance to make a bathymetric map. Study the contour map below.

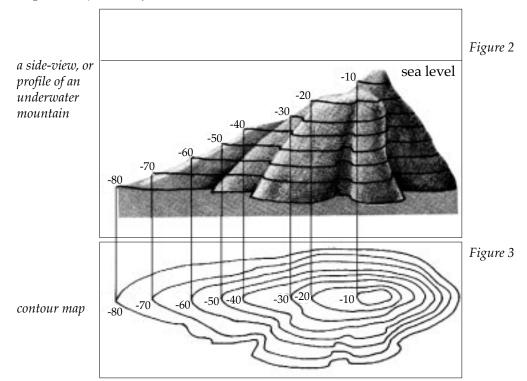


Figure 1 on the previous page shows how an underwater mountain is represented on a contour map. The bottom of *Figure 1* shows a *profile* of the same mountain along a line from *A* to *B*. Several rules must be followed in making a contour or bathymetric map. Study the rules below.

- A. All points on a given contour line are the same height or depth.
- B. Two contour lines may never cross each other.
- C. A contour line never ends. Contour lines usually surround a given parcel of land.
- D. If a line does not surround a parcel of land, it must disappear off the edge of the map.

Contour lines should **not** make sharp angles. They generally show smooth, regular changes. For example, if one point shows a depth of one meter and the next point shows a depth of three meters, the contour line for the depth two meters must occur between the two points.

Successive contour lines that are far apart on the map indicate a *gentle slope*. Lines that are close together indicate a *steep slope*. Lines that run together indicate a *cliff*. The illustration below shows how contour lines express *depth* and *form*.

Figure 2 on the previous page also represents an underwater mountain. The contour map in *Figure 3* shows these features as if you are looking down on the area represented from a point directly above it. Labels on contour maps should include the measurements and the units used such as feet, fathoms (6 feet), or meters.

Pre-Lab Study:

Use the **lab activity text** *information on the previous pages to answer the following. Do this before you perform the lab activities on the next pages.*

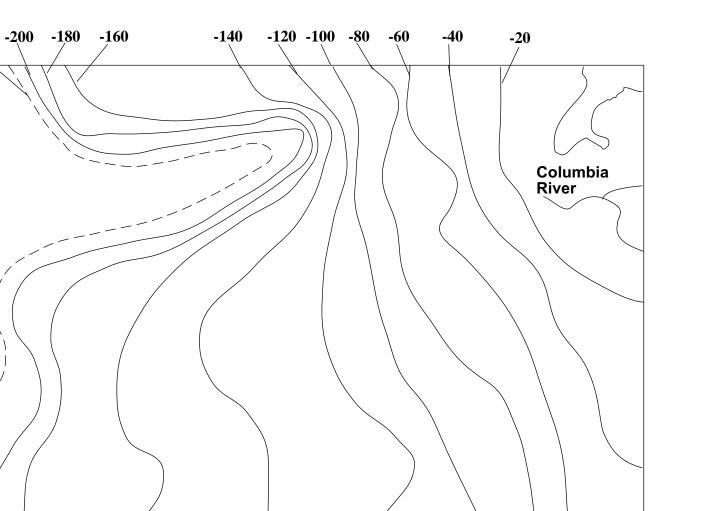
1. How do contour maps help oceanographers study the ocean floor?

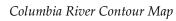
- 2. What are the underwater contour maps called?_____
- 3. What does the contour map show in *Figure 1*?
- 4. Do contour lines end? _____
 - Explain._____
- 5. If the contour lines are far apart, what will this indicate?_____

- 6. What is indicated when contour lines are close together? _____
- 7. How will a contour line be drawn if the contour line does not

surround a piece of land?

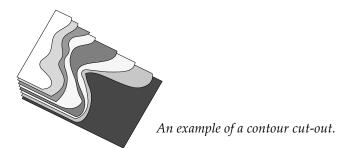
8. Describe the topography depicted in the contour map in *Figure 3*.




Procedure:

- 1. Obtain one piece of carbon paper and 4 or 5 pieces of cardboard. (One large-size gift box will be adequate.)
- 2. Place the carbon paper face **down** on the cardboard.
- 3. Place the contour map over the carbon paper on the cardboard and trace the -400-meter contour onto the cardboard.
- 4. Use scissors to cut along the contour line. Keep the larger piece of cardboard. The large piece of cardboard represents the surface of the Earth at a depth of -400 meters. Label the piece you save as *-400 meters* and set aside.
- 5. Repeat the tracing steps (steps 3 and 4) for each of the other contour lines on the map. Be sure to keep the *shore-side* pieces and discard the *ocean-side* pieces. Ask your teacher for assistance if you need help.
- 6. Place the cut-out labeled *-400 meters* over the *-*400-meter contour line. You will layer each cut-out contour in order of decreasing depth on top of the *-*400-meter cut-out (*-*400, *-*200, *-*180, *-*160, *-*140, *-*120, etc.).
- 7. Be sure to stagger each cut-out on top of the other so that each contour level can be seen. (See page 177 for an example of a contour cut-out.)
- 8. Glue each layer in place as you go along.
- 9. Label the following features on your three-dimensional model: *continental shelf, continental slope, submarine canyon,* and *abyssal plain*.

Study the characteristics below of the contour map on the following page:


- All measurements are in meters.
- The equal-depth points are connected with contour lines
- The contour lines begin with -20 meters, then increase to -40, -60, etc. (intervals of 20).
- The -400-meter contour line is added as a *dashed* line. The dashes show that the interval between the -200-meter line and the -400-meter line is different than the other intervals shown.

-400

Analysis:

Use your **three-dimensional model** *from the previous page to answer the following.*

- 1. What is the most likely cause of the *submarine canyon* on your map?
- Compare your model with those of others in your class. Are all of the maps exactly the same?
- 3. How can you account for any differences you may have observed?
- At about what depth does the continental shelf become the continental slope? ______
- 5. At about what depth does the continental slope become the abyssal plain?
- On which representation of the bottom (contour map or model) is it easier for you to see the bottom shape?
- 7. Why do most ship captains use contour maps or charts rather than three-dimensional models to show bottom contours? Give two reasons.

Match each definition with the correct term. Write the letter on the line provided.

1.	deep V-shaped valleys found along the continental slope	A.	abyssal plains
2.	the sloping surface between the outer edge of the continental shelf and the ocean basin	B.	basin
3.	the ocean floor at a depth of more than 4,000 meters	C.	continental shelf
4.	detailed charting of the features of an area; heights, depths, and shapes of the	D.	continental slope
	surface of an area	E.	guyots
5.	large, flat regions on the ocean floor	F.	mid-ocean ridge
6.	long, narrow cracks in the ocean floor; the deepest parts of the ocean	G.	seamounts
7.	underwater cone-shaped volcanic mountains	H.	submarine
8.	a mountain chain that rises from the ocean basin; where seafloor spreading takes place		canyons
9.	a relatively flat part of the continent covered by seawater	I.	topography
10.	underwater volcanic mountains with flat tops	J.	trenches

Unit 8: Ocean Sediments

Unit Focus

This unit examines the source of ocean floor sediment and beach sediment. Students will correlate the characteristics of each sediment type to its environment and identify marine organisms that inhabit specific sediment types.

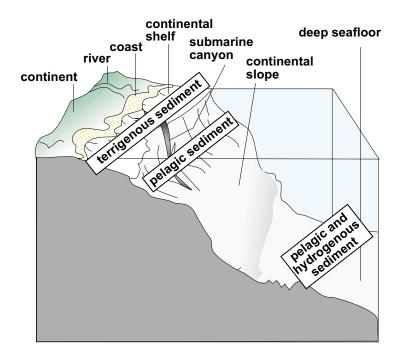
Student Goals

- 1. Identify the three sediment types that cover the shore and ocean floor.
- 2. Identify environments that are characteristic of each sediment type.
- 3. Explain the origin of each sediment type.

Vocabulary

Study the vocabulary words and definitions below.

clay	very fine sediment particles
composition	the make-up of something; what is in it
dweller	an organism that lives in a certain place; an inhabitant
feldspar	the most common mineral on Earth; made up of silica, aluminum, and other elements
hydrogenous sediment	particles once suspended in the water that settle to the ocean floor as sediment, such as manganese nodules and phosphorite
lava	molten, or melted, volcanic rock
manganese nodules	rounded lumps of valuable mineral deposits found on the ocean floor containing manganese and other elements; formed from minerals crystallizing from seawater
00ze	mud-like organic remains of animals and plants; common on the deep-ocean floor
organic	made up of parts of once-living organisms; contains carbon atoms



pelagic sediment sediment from the open ocean
permeability the speed or rate of flow at which liquid or gas passes through a porous material such as sediment
porosity the ratio of the volume of all the pores in a material to the volume of the whole
quartz very hard crystal-like mineral made up of silicon and oxygen; second most common mineral on Earth after feldspar
sediment particles of sand and silt formed from rock or animal remains
terrigenous sediment sediment that comes from the land; gravel, sand, mud
tolerate to endure or resist the action of
transitional zones zones in a state of change from one condition to another

Introduction: Ocean Sediment—Blanketing the Ocean's Floor

If you were to begin walking from your nearby shore and out into the ocean or gulf, your feet would feel a blanket of **sediment** composed of particles from the land, the atmosphere, and the sea. Many of these particles are the remains of once-living organisms. Geological oceanographers have discovered three distinct types of sediment, or deposits, that line the shore and ocean floor: **terrigenous sediment**, **pelagic sediment**, and **hydrogenous sediment**. These three different types of sediment are classified according to their source—where the sediment comes from—and the materials from which they are composed.

Terrigenous Sediment: Building and Covering the Shores and Beaches

Composed of rock or gravel particles, sand, and mud, *terrigenous sediments* build and cover our shores, beaches, and the ocean floor closest to land. Terrigenous sediment comes mostly from the erosion and weathering of land. A lesser amount comes from the activity of land volcanoes. Rivers then carry the sediment to shores, beaches, and the sea. Rivers and the force of waves leave most of these deposits on the continental shelf—near the shore and the mouths of rivers. Beaches form when more sediment is deposited on the shores than is washed away by the action of the waves, tides, and currents.

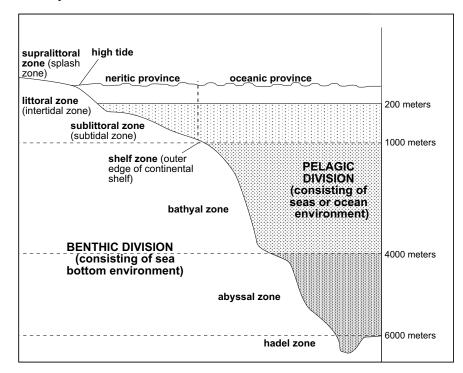
Terrigenous sediments come in many different sizes, but three sizes are most common and form three different types of beaches. The *rock particles* forming rocky beaches are the largest; *sand particles*, composing sandy beaches, are medium-sized; and *mud*, the smallest particles, form muddy beaches. If you see a rocky beach, you can be reasonably certain that the nearby land also has resistant rocks. Similarly, if you see a sandy beach quite common in Florida—you can expect the surrounding land to be covered by rocks, such as **quartz**, **feldspar**, and *limestone*, that break down into sand. If you see a muddy beach, the surrounding land will most likely be muddy also.

Rocky Beaches: West Coast Beaches

Rocky beaches may be composed of large boulders, medium-sized rocks, or small gravel-sized particles.

Rocky beaches may be composed of large boulders, medium-sized rocks, small gravel-sized particles, or even smaller-sized granules. The beaches on the West Coast of the United States are much rockier than the beaches along the Florida coast. A famous rocky beach is Pebble Beach in California. At Pebble Beach you can see egg-sized smooth rocks that have been carried down from the mountains by fastmoving waters. When you

see rocky beaches, you can assume that this *heavier* sediment was carried by forceful waters. Other rocky beaches are common in Alaska and western Canada, as well as in parts of the northeastern United States, such as Maine.


Zones. Zones contain a variety of environments that oceanographers have classified into three major zones: supralittoral, littoral, and sublittoral. (*Littoral* means pertaining to the shore of a lake, sea, or ocean.) Because each zone has its own unique characteristics and environment, certain types of organisms survive and breed in each one.

On a rocky shore, rocks, cracks, and crevices provide shelter for organisms, and circulating water carries oxygen and food particles for their survival. Rocky shores have a higher **permeability**—water passes

quickly and easily through the spaces between the sediment particles. This higher permeability allows wave action to wash smaller sediments out to sea. These rocky areas between the land and the ocean are considered **transitional zones** because they are a place where land and ocean meet.

The first zone is the *supralittoral zone*, or high-tide zone, which is very dry. Water only reaches this area at very high tides or when strong waves splash it. (Sometimes this area is called the *splash zone*.) Plants and animals must be very sturdy to **tolerate** this zone, which goes from rushing water to extreme, drying sun. Most organisms in this area attach themselves to rocks and can withstand being dry for long periods of time. The most common animal in the splash zone is the periwinkle snail. Algae and other marine plants are also found here. The algae are dark and crusty and form a line at the high-tide level. This black algae line marks the usual high-tide line on rocky shores all over the world.

zones of the marine environment

Below this zone is the *littoral zone*, or normal intertidal zone. This area is constantly being covered and uncovered by the tides. Animals here must also be able to withstand drying out, but for shorter periods of time. Organisms in this zone need a shell or attachment to survive waves pounding the rocky surface. Barnacles, sea urchins, and flexible algae are common inhabitants of the littoral zone.

The *sublittoral zone*, or low-tide zone, remains under water and is a less harsh and demanding environment than the other zones. It is also called the *subtidal zone*. A variety of plants and animals such as sea palms, algae, starfish, and barnacles are common in this zone. Many fish and other animals, such as sea otters and seals or sea lions, feed on the organisms in this low-tide zone.

	Characteristics o	f Rocky Beaches	
Environmental Conditions	Description	Marine Life	Location Examples
wave action transitional zone good circulation abundant food, shelter, and oxygen	hard surfaces cracks and crevices hiding places exposed areas	most attach to rocks periwinkle snail barnacles starfish sea urchins algae sea palms	beaches in Monterey Bay, California Maine Hawaii most Pacific beaches

Sandy Beaches: Florida Beaches

The **composition** of sandy beaches varies according to the local environment. Hawaii, for example, has black sand beaches composed of **lava** particles that erupted from volcanoes when the islands were formed. Other sandy beaches may be composed of the remains of once-living organisms. Many beaches in the Caribbean, for example, are composed of small particles of coral skeletons. These coral sand beaches may be colored pink or yellow, depending on the type of coral. Other beaches, such as those in southeastern Florida, are composed of sand and small shell fragments.

In most of the United States, the beach sand is made up of *quartz* and *feldspar*—the two most common minerals on Earth. White sand beaches, like those on the northern coasts of Florida along the Gulf of Mexico, contain only these minerals and do not contain any other minerals or impurities that darken the color.

Sand can be very coarse to very fine. Sand has a fairly high degree of **porosity**—or a large amount of pore space—lots of room—between sediment particles. Water, therefore, circulates between the sand particles, providing plenty of oxygen for organisms to survive.

Like rocky shores, sandy beaches experience wave action. The force of the waves determines the size of sand particles found on the beach. In the winter, when the waves are stronger on many shores, many of the smaller grains of sand on the beach are washed away. This sand is then replaced in the spring and summer when the wave action lessens. The waves are constantly moving the sand particles underneath them. You can feel this grinding action if you stand in the surf area as the waves wash particles of sand past your feet. The larger the particle, the less chance the wave action will erode the beach.

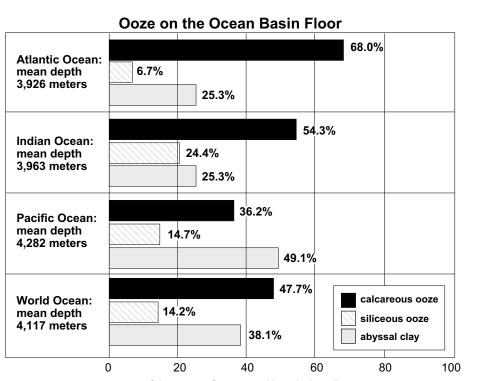
Animals that live on sandy beaches must be able to tolerate, or withstand, this force. Many of these animals have shells to protect their soft bodies or are streamlined to move with the waves. All sand **dwellers** must be able to move with the sand or burrow back into it. These actions keep the organisms from being torn up or washed away by the friction of the sand. Clams, worms, crabs, and sand dollars are common animals on sandy beaches. Many other slow-moving or attached animals sometimes wash up on sandy beaches because of the wave action. Shoal grass is also common in offshore sandy areas.

A sandy beach has three zones like those on a rocky shore. The supralittoral zone, or *high-tide zone*, is very dry, and few animals can survive there. The littoral zone, or normal *intertidal zone*, is very harsh with frequent wave action followed by drying. The sublittoral zone, or *low-tide zone*, is less harsh and provides constant protection for young fish and other soft-bodied animals.

	Characteristics	of Sandy Beaches	
Environmental Conditions	Description	Marine Life	Location Examples
oxygen good circulation regular wave action grinding motion	lava sand coral sand feldspar quartz loosely packed	hard-shelled or streamlined must burrow or move with sand clams crabs worms sand dollars shoal grass	beaches in Hilton Head, South Carolina Panama City, Florida most Atlantic beaches

Muddy Shores: Marked by Their Distinct Smell

Mud is formed when tiny particles of sediment settle in areas of resting water with little or no wave action. The lack of wave action makes mud flats quiet and stable environments. Because of its small particle size, mud is tightly packed and very little oxygen circulates through the particles. Bacteria present in mud flats do not require oxygen. These bacteria help break down decaying plants and animals. However, in doing so, they produce hydrogen sulfide gas, which smells like rotten eggs. These bacteria make mud a very nutrient-rich sediment.


Animals that live in this unique environment must be very well adapted. They usually live on or very near the surface so that they can get oxygen. Most of these animals have special gill systems to prevent the small, tightly packed mud particles from clogging respiratory systems. Some mud dwellers must create currents that bring oxygen and water into their burrows.

Eel grass, turtle grass, and other grasses are common in muddy areas. The roots of these plants trap particles of mud that build up in these environments. As the area fills in, it is exposed to the sunlight and begins to dry up. Over time, these changes may turn a mud environment into a dry-land environment.

	Characteristics	of Muddy Shores	
Environmental Conditions	Description	Marine Life	Location Examples
little oxygen no circulation no wave action quiet area stable soft	fine particles soft tightly packed	special gill systems worms clams bacteria eel grass turtle grass	coastal areas with large estuaries Chesapeake Bay Apalachicola, Florida

Pelagic Sediments: The Ocean-Floor Blanket

Pelagic sediment covers most of the deep-ocean floor where terrigenous sediments cannot reach. The two main types of pelagic sediment are **clay** and **ooze**. Pelagic deposits range in thickness from 60 meters to 3,330 meters. They are thickest in zones of upwelling.

percent of deep-ocean floor covered by pelagic sediments

Clay is composed of very tiny particles. Some of these particles are blown from land and fall from the atmosphere out at sea. Other pelagic clay includes dust from volcanic eruptions. These inorganic red clay deposits cover 38 percent of the ocean bottom. In some parts of the ocean floor, the clay is hundreds of feet thick. Scientists study these clay deposits to learn about ancient weather and the effects of past volcanoes and meteorites.

Pelagic *ooze* comes from the **organic** remains of tiny plants and animals that once floated near the surface of the ocean. This material was once living and may contain small microscopic fossils. There are two types of ooze. The most abundant type comes from animals that had shells made of calcium. This *calcareous* ooze covers 48 percent of the ocean floor and is mostly associated with warmer, shallow waters. *Siliceous* ooze comes from the remains of animals and plants that had glass-like shells composed of silica. The remains of these silicon-shelled organisms cover 14 percent of the ocean floor and are mostly associated with colder, deep waters.

Hydrogenous Sediments: The Bed of Minerals

Scientists are just discovering a variety of different types of hydrogenous sediments on the deep-ocean floor on places where pelagic sediments typically do not accumulate. *Hydrogenous* means "derived from sea

water." These deposits are formed from a chemical action within seawater. Some of these deposits are too difficult and, therefore, expensive to gather, and so their use by industry has been limited. Other deposits have too low a concentration of minerals and so are not yet valuable to industry. *Phosphorite* is one example of a valuable hydrogenous sediment found in high concentration on the ocean floor. Phosphorous is used to produce phosphates—a key ingredient used in fertilizer and the production of other chemicals. As our mineral supplies on land decrease, industry will direct more effort towards extracting these deposits from sediments.

Manganese nodules, lumps of the mineral manganese, are the best known of the hydrogenous deposits. They contain manganese and iron with smaller amounts of nickel, copper, cobalt, and aluminum. Researchers estimate that over one billion tons of these nodules are sitting on the seafloor, mostly in the Pacific Ocean. Because this mineral lies over 3,200 meters down, extracting it is not yet practical. One machine being developed to collect these nodules functions like a giant vacuum cleaner that sucks them up from the sea bed.

Summary

The ocean's floor is blanketed by *sediment*—particles from the land, atmosphere, and the sea, and often from the remains of once-living

organisms. Scientists classify sediment according to its source and where it is deposited. Different kinds of sediment support different organisms. Wave action continually moves sediment onto and off of coastal areas, often sweeping smaller particles away and leaving larger ones. Where there is no or little wave action, mud accumulates.

The composition of sandy beaches varies according to the local environment.

Match each **characteristic** *with the correct* **habitat**. *Write the letter on the line provided*. **One or more habitats will be used more than once.**

1.	very little oxygen	М.	Mud
2.	may be made of quartz and feldspar	R.	Rock
2	-	S.	Sand
3.	quiet, stable, and soft		
4.	abundant food, shelter, and oxygen		
5.	grinding motion		
6.	barnacles, starfish, algae		
7.	hiding places, hard surfaces		
8.	animals bury themselves or have hard shells		
9.	animals may be attached		
10.	eel grass		
11.	no waves or circulation		
12.	loosely packed		

Match each **description** *with the correct* **zone***. Write the correct letter on the line provided.* **One or more zones will be used more than once.**

1.	high-tide zone	A.	littoral
2.	between tides	В.	sublittoral
3.	low-tide zone	C.	supralittoral
4.	remains under water		
5.	constantly covered and uncovered by water		
6.	very dry zone		
7.	sea urchins, flexible algae		
8.	periwinkle snails		
9.	fish, sea palms		

_____ 10. black algae line, splash zone

Use the list below to write the correct term for each description on the line provided.

hydrogenous sedime pelagic sediment	ent	terrigenous sediment
	1.	eroded land material
	2.	comes from the open ocean
	3.	manganese nodules
	4.	clay and ooze
	5.	rock, sand, and mud
	6.	comes from minerals in seawa
	7.	remains of once-living organis
	8.	found close to land
	9.	formed from chemical action seawater
	10.	sinks to the deep ocean

_

Lab Activity: Sand Observations

Investigate:

• Observe the different components of sand.

Materials:

- sand samples from different areas
- white paper
- double-sided tape or clear glue diluted 3 to 1 with water
- magnifying glass or microscope
- metric ruler

Procedure:

- 1. Take a sample of sand.
- 2. Place one drop of glue diluted 3 to 1 with water on the microscope slide or a piece of double-sided tape.
- 3. Sprinkle a small amount of sand on the glue or tape and allow to dry.
- 4. Look at your prepared slide under the magnifying glass or microscope.
- 5. Record your observations below.
- 6. Repeat for the number of samples provided.

Observations:

- 1. **Color:** Describe any color in your sand sample.
- 2. **Shape:** Draw the shape of the sand grains seen under magnification.
- 3. Size: Measure the average length of the grains in millimeters (mm).

- 4. **Luster:** Describe the surface appearance of the sand grains (such as shiny, glassy, dull).
- 5. **Origin:** Describe the type of sediment (such as terrigenous—from land).
- 6. **Roundness:** Describe whether or not the sand grains are rounded or have sharp edges.
- 7. **Other:** List any other observations of the sand grains. Draw any shells or parts present.

	Sand	Observations	
	Sample #1	Sample #2	Sample #3
Color			
Shape			
Size			
Luster			
Origin			
Roundness			
Other			

alysis	
l. Coi	mpare the different types of sand grains you observed
2. Wh	ere did each of our samples probably come from?
Ho	w can you tell?

Match each definition with the correct term. Write the letter on the line provided.

 1.	to endure or resist the action of	A.	hydrogenous sediment
 2.	zones in a state of change from one condition to another	B.	pelagic sediment
 3.	the speed or rate of flow at which liquid or gas passes through a porous material such as sediment	C.	permeability
 4.	particles once suspended in the water that settle to the ocean floor as sediment, such as manganese nodules and phosphorite		sediment terrigenous sediment
 5.	sediment from the open ocean	2.	
 6.	sediment that comes from the land; gravel, sand, mud	F.	tolerate
 7.	particles of sand and silt formed from rock or animal remains	G.	transitional zones

Use the list below to write the correct term for each definition on the line provided.

clay composition dweller	feldspar lava manganese	nodules ooze organic	porosity quartz
	der cor ele	unded lumps of v posits found on th ataining mangane ments; formed fro stallizing from se	ne ocean floor ese and other om minerals
		de up of parts of anisms; contains	
		d-like organic re l plants; commor or	
	4. ver	y fine sediment p	particles
		organism that liv inhabitant	es in a certain pl
		ratio of the volu naterial to the vol	
	ma	most common m de up of silica, al ments	
	of s	y hard crystal-lik silicon and oxyge nmon mineral on	n; second most
	9. mo	lten, or melted, v	olcanic rock
	10. the	make-up of som	ething; what is i

Unit 9: Food Chains and Food Webs

Unit Focus

This unit reviews energy production in plants and animals, feeding relationships, and symbiosis in the ocean. Students will become familiar with the hierarchy in food chains and will become better acquainted with food webs and symbiosis between marine organisms.

Student Goals

- 1. Define food chain.
- 2. Identify producers, primary consumers, secondary consumers, tertiary consumers, and decomposers within a food chain.
- 3. Define food web.
- 4. Understand that simple food chains are vulnerable to extreme changes and that food webs are more complex and stable.
- 5. Know that species within a food web may interact with each other through commensalism, mutualism, or parasitism.

Vocabulary

Study the vocabulary words and definitions below.

biomass	. total amount of organisms per unit volume
carbohydrates	. compounds containing the elements carbon, hydrogen, and oxygen
carnivore	. an organism that eats animals <i>Example</i> : lion, shark
commensalism	. a symbiotic relationship in which one organism benefits and the other is unaffected
consumers	. organisms that eat other organisms
decomposers	. organisms that eat dead plants and animals, as well as animal wastes
food chain	. the transfer of energy from the sun to producers to consumers; describes groups of organisms, each of which is dependent on another for food
food web	. interrelated food chains in an ecosystem; the feeding relationships between various plants and animals
herbivore	. organism that eats only plants <i>Example</i> : sheep, manatee
hydrolysis	. a chemical reaction where water is used to break down compounds; typically occurs when food is digested

krill	shrimp-like zooplankton
lipids	high energy nutrients such as fats and oils
metabolism	a chemical process in which animals break down and utilize nutrients
minerals	naturally occurring, inorganic elements and compounds found in water and soil that do not contain the element carbon
mutualism	a symbiotic relationship in which both organisms benefit
nutrients	any organic or inorganic material that an organism needs to metabolize, grow, and reproduce
omnivore	organism that eats both plants and animals <i>Example</i> : humans, killifish
parasitism	a symbiotic relationship in which one organism (the parasite) benefits and the other (the host) is harmed
photosynthesis	the process plants use to make the sugar glucose from water, carbon dioxide, and the energy in sunlight
phytoplankton	small, usually microscopic plant plankton that float or drift in the ocean
primary consumers	organisms that eat plants (producers)

producers	. organisms that make their own food through photosynthesis
protein	. complex organic compound made up of amino acids
scavengers	. animals that eat the remains of already dead animals and plants
secondary consumers	. organisms that eat primary consumers but may also eat producers
symbiosis	a permanent, close relationship between two organisms that benefits at least one of them
tertiary consumers	organisms that eat secondary consumers but may also eat primary consumers and producers
zooplankton	. small, usually microscopic animal plankton that float or drift in the ocean

Introduction: Food Chains and Food Webs—Energy Production and Transfer

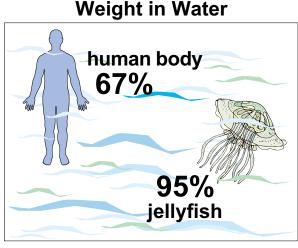
Marine animals perform a variety of activities in their daily struggle for survival. Squid use jet propulsion; scallops clap their shells; fish dart in and out of seagrasses and coral banks. In order for these animals to carry out these tasks, they must use energy. Animals get energy from food.

Plants obtain energy for survival from the sun. Plants convert the sun's energy into a food source. Animals cannot make their own food and therefore must consume food to satisfy their energy

needs. Food provides useful chemical compounds or **nutrients** for plants and animals. Proteins, sugars, starches, fats, vitamins, **minerals**, and water are the basic nutrients needed by plants and animals to maintain their energy levels. Plants and animals break down and utilize these nutrients through a process called **metabolism**.

Cells of living organisms are composed of **proteins**, **carbohydrate**s, and **lipids** (also known as *fats*). Living organisms obtain these compounds from the foods they consume. Proteins are made up of tiny building blocks called *amino acids*. There are 20 different amino acids. Growth in animals occurs when amino acids join together inside the cell to make proteins.

There are two nutrients that organisms can obtain energy from quickly. These two nutrients are sugars and starches. Together, sugars and starches make up carbohydrates. Carbohydrates are compounds that contain the elements carbon, hydrogen, and oxygen in specific proportions. An example of a simple sugar compound is glucose. Glucose has the molecular formula $C_6H_{12}O_6$. The molecular formula represents how many atoms of each element are present. In a molecule of glucose, $C_{\mu}H_{12}O_{\mu}$ there are 6 carbon atoms, 12 hydrogen atoms, and 6 oxygen atoms. When glucose is not being used in the body, it is changed into and stored as starch. Starches can be changed back into molecules of glucose when a plant or animal needs energy. The process of changing starch back into glucose is a chemical reaction called hydrolysis. Hydrolysis is a breaking down process and occurs when food is digested. During the breaking down process, energy is released when the chemical bonds of the molecules are broken. Living cells perform these important chemical reactions to fulfill their energy needs.



Fats and oils are high energy nutrients called *lipids*. Because a lipid molecule has a greater number of carbon-hydrogen bonds, it contains more energy than that of a carbohydrate molecule. During hydrolysis, the breaking down process, the carbon-hydrogen bonds in fats are broken and energy is released.

Vitamins are organic compounds that are needed, in trace amounts, to sustain good health. Vitamin D is an example. Vitamin D is necessary for healthy bone growth and is produced in small amounts in marine mammals when ultraviolet light reacts with the fat located just under the marine mammals' skin. Many animals and humans consume marine plants. Marine plants are a rich source of vitamins A, E, K, and B.

Living things need to take in proteins, carbohydrates, lipids, and vitamins, but living things also need minerals and water for their survival. Elements and compounds found in water and soil that do not contain the element carbon are minerals. An example of a mineral found in seawater is sodium chloride, NaCl, or salt. Marine plants obtain the minerals they need by absorbing the minerals from the water. Marine animals that eat marine plants absorb the plants' minerals into their body tissues. Sodium and chloride ions found in seawater are utilized in the muscles and nerves of many marine animals. Other minerals found in seawater include silica, the main ingredient in the manufacture of glass, found in the cell wall of microscopic diatoms.

Water is the most abundant nutrient in most living organisms. About 80 percent of an organism's weight is water. The exact amount of water varies from one species of organism to another. To illustrate, the human body is about 67 percent water while the jellyfish is about 95 percent water. Water contains and transports many dissolved substances within the bodies of living organisms. Water is also necessary for chemical reactions such as photosynthesis to occur.

Water is the most abundant nutrient in most living organisms.

The Food Chain

All organisms on Earth—including human beings—survive by participating in a **food chain** and a **food web**. Food chains and food webs show the *transfer of energy* from the sun to **producers**, such as plants, which transfer their own food to **consumers**, such as people. For example, the first-order consumer may be a plant eater, or **herbivore**, such as a sheep or manatee. The second-order consumer may then be a meat-eater or **carnivore**, such as a dog or shark, or an animal that eats both plants and animals an **aminum** such as a person or

and animals, an **omnivore**, such as a person or a killifish. The transfer of energy is really complete when both producers and consumers die and their remains are consumed by **scavengers**. Scavengers eat what is left of producers and consumers. Examples of marine scavengers include some snails and crabs. The end of a food chain or web occurs when **decomposers**, such as bacteria, break down dead plants and animals, as well as wastes.

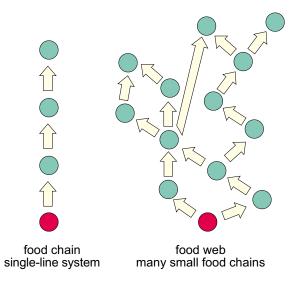
A different food chain might begin with a tree dined on by a leaf-eating beetle. The beetle then walks into a trap and becomes supper for a spider. The spider is then gobbled up by a small bird. Then that bird is caught by a cat. The cat, if lucky, may be the final link in that particular food chain.

Some food chains are complex and may move through many steps before they reach their endpoint. Other food chains, particularly those in extreme or harsh

Then that bird is caught by a cat. The cat may be the final link in this particular food chain before scavengers and/or bacteria complete the process.

The spider is then gobbled up by a small bird.

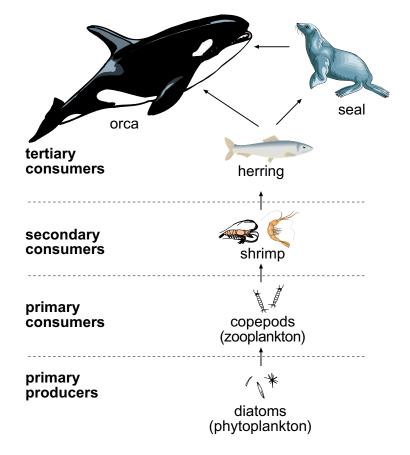
The beetle then walks into a trap and becomes supper for a spider.



This food chain might begin with a tree dined on by a leaf-eating beetle.

food chain

environments, may be quite simple and have only a few links. Food webs, as shown in the diagram below, contain many interrelated food chains and allow consumers to have choices in their diet.


Hierarchy in Food Chains: Who Eats Whom

In food chains and food webs, there is a hierarchy, or order, of "who eats whom." At the first level are plants, which are called *producers* because they produce the food necessary for themselves and all consumers and decomposers on the food chain. Although plants are at the bottom of the food chain or web, they are the most important part of the chain. Without plants, the chain would collapse, and all animals above would starve and perish.

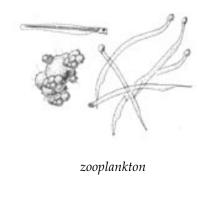
		What Eats What in a Marine Ecosystem?				
		Organism Type	Method of Obtaining Food	Examples		
	sms	producer	makes its own food	phytoplankton, sea grass, zooxanthellae		
	organisms	consumer	obtains food by eating other organisms	sea star (starfish), sponge, shark		
	on dead (I levels	herbivore	eats only producers	manatee, limpet		
dec		carnivore	eats only consumers	shark, octopus, sea otter		
	feed on a	omnivore	eats both consumers and producers	basking shark, killifish sponge, coral, crab		

The animals that eat the plants are called **primary consumers**. Those animals that consume primary consumers are called **secondary consumers**. **Tertiary consumers** are those animals that feed on secondary consumers. Some secondary and tertiary consumers may also eat producers or plants. For example, crabs feed on plants as well as fish. Typically, the highest level upon which a consumer feeds determines what it is called, even though it may feed on more than one level.

feeding levels in a marine food chain

The Ocean's Plants: Providing for the Sea's Carnivores and Herbivores

Biomass, the total amount of organisms per unit volume, of carnivores (meat-eaters) is much less than that of the herbivores (plant-eaters) they consume. Similarly, the biomass of herbivores will be much less than the total weight of the plants they consume. For example, a hundred tons of plants would produce only about 10 tons of herbivores, which would, in turn, feed and sustain only one ton of carnivores. As you move up levels on the food chain, biomass decreases.


Phytoplankton: The First Level of the Ocean's Food Chain

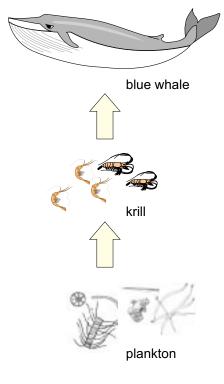
On land and in the ocean, plants are the basis of all life and are the first level of food chains. **Phytoplankton**, the most plentiful plants in the ocean, are the most important plants in the ocean's food chain. Phytoplankton float in the ocean's currents and become food for the ocean's most numerous and greatest biomass of herbivores, the plant-eating **zooplankton**. Zooplankton also float in the ocean and depend on phytoplankton for survival.

phytoplankton

Zooplankton: Converting Plant Tissue to Animal Tissue

Zooplankton are the majority of the ocean's *primary consumers*: They convert plants (phytoplankton) into animal tissue (the zooplankton themselves). Zooplankton then become food for the next organisms higher up in the food chain: the zooplankton-eating animals. If we keep moving up the ocean's food chain, we finally reach organisms that are not food, or prey, for any other marine organisms; for example, sharks and killer whales.

Some zooplankton do not eat individuals one at a time but swallow large amounts of water and then trap phytoplankton while filtering out the water. By spending most of their feeding time in the photic zone—where plants grow—zooplankton can find and eat enough phytoplankton to sustain themselves.


Zooplankton are not as abundant as phytoplankton. When zooplankton eat phytoplankton, only some of the phytoplankton become part of the zooplankton. Most of the food energy consumed by the zooplankton is given off as either energy for survival or as waste.

A Simple Food Chain: From Phytoplankton to Krill to Baleen Whales

One of the simplest food chains in the ocean involves the whale. In the ocean off Antarctica, the sun remains in the sky for up to 24 hours during the summer. Because of this, many phytoplankton grow there at that time

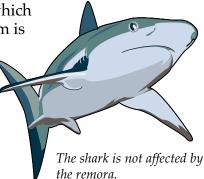
of the year. The phytoplankton are eaten by **krill**. *Krill* are shrimp-like zooplankton and form the second level in this food chain. Krill, then, are trapped and eaten by the carnivorous baleen whales. Baleen whales, the third level in this food chain, filter large amounts of krill out of the water with rows of whalebone plates in their mouths that act as sieves (see Unit 16).

food chain of the baleen whale

The picture to the left shows the basic food chain of a baleen whale. The food chain becomes complicated when other animals get into the picture and create a food web. A *food web* is a network of food chains that are linked together. For example, krill are not only eaten by whales but are also eaten by other fish, penguins, and seals. The baleen whale may also be eaten by the killer whale. In that case, the killer whale would be at the top of this food web.

A food web, even one as simple as the web described above, follows a *natural* order. Plants or animals at the lower levels are consumed by animals higher up in the chain. If a plant or animal at lower levels begins to die out or disappear, then animals higher up would also begin to die from lack of nourishment. There are a number of causes for a break in a food web.

Disease or sudden weather changes can alter the biomass of particular plants, such as phytoplankton, or animals, such as zooplankton. Disease and harsh weather are natural phenomena. Over time, a food web will usually recover from such occurrences.


The world's fishing industry, however, is something that could destroy the ocean's food chain. If the fishing industry began wiping out lower levels of the food chain, they would upset the balance of marine life. Eventually, marine life at all levels would begin to disappear because of this break at a lower level of the food chain. To preserve ocean life, as well as make sure that there will be fish to be caught in the future, the fishing industry must monitor itself and not catch too many fish at any level in the ocean's food web.

Food Relationships in the Ocean

In the marine environment, there is a steady struggle for survival. Marine organisms must always be on the look out for hungry predators as well as hunt for food, search for mates, and stake out territories. To aid or benefit in their survival, many organisms have established relationships with organisms not within their species. A relationship that benefits an organism is called **symbiosis**. **Commensalism**, **mutualism**, and **parasitism** are examples of *symbiotic* relationships.

Commensalism is a symbiotic relationship in which one organism *benefits* while the other organism is *unaffected* by the relationship. Examples of marine organisms in commensalistic relationships with each other are several species of sharks and a small group of pilotfish, or a *remora*. The shark and the remora have a symbiotic relationship called commensalism.

The remora is a small scavenger fish that attaches

to the underside of many sharks. The remora feeds on the leftover particles of food that the shark does not eat. The shark is not affected by the remora, and the remora gains food by tagging along with the sharks. Another commensalistic relationship is found between some species of whales and barnacles. The barnacles live on the backs and around the mouths of some whales. Can you explain which of these organisms is benefiting and how?

Mutualism is a symbiotic relationship in which *both* organisms *benefit* from the relationship. Examples of marine organisms that are in a mutualistic relationship with each other are *coral polyps*, the basic structure of the coral animal, and algae known as *zooxanthellae*. The zooxanthellae live inside the coral polyps. The zooxanthellae benefit from the coral polyps in that they receive a place to live and food in the form of carbon dioxide,

clownfish

nitrates, and phosphate. The coral polyps receive food in the form of glucose and oxygen from the zooxanthellae. In this relationship both organisms receive something from the other. Another mutualistic relationship is found between the sea anemone and the clownfish. The clownfish lives

among the stinging tentacles of the sea anemone. Can you explain how the relationship between the clownfish and sea anemone is mutualistic?

Parasitism is a symbiotic relationship in which one organism *benefits* and the other organism is *harmed*. An example of marine organisms that have a parasitic relationship with each other is isopods and fish. Isopods are very small crustaceans similar in appearance to a rolly polly insect. The isopods attach to the fish's skin and gills. They obtain nutrients from the fish's blood much as a tick obtains nutrients from a dog. Can you think of any other parasitic relationships that occur between marine organisms?

Summary

Food chains show the "transfer of energy" from the sun to *producers* (such as plants) and on to *consumers* (such as people) and finally to *decomposers*. Each consumer in a food chain has a smaller *biomass* than the links below it. *Simple food chains* are those with fewer links. Simple food chains usually exist where the environment is vulnerable to extreme change or where plants have a short growth season. A *food web* describes interrelated food chains within an ecosystem. Species within a food web may interact with each other through *predation, commensalism, mutualism,* and *parasitism*. We must protect natural food webs to preserve the food supply for all marine life.

Practice

Match each description with the correct term in each section. Write the letter on the line provided.

			food chains
 1.	plant- and animal-	А.	carnivores
	eaters	B.	herbivores
 2.	animal-eaters	C.	omnivores

3. plant-eaters

consumers

- 4. eat primary consumers A. and sometimes producers
- 5. eat only producers
- 6. eat secondary consumers, and sometimes primary consumers and producers

the other is harmed

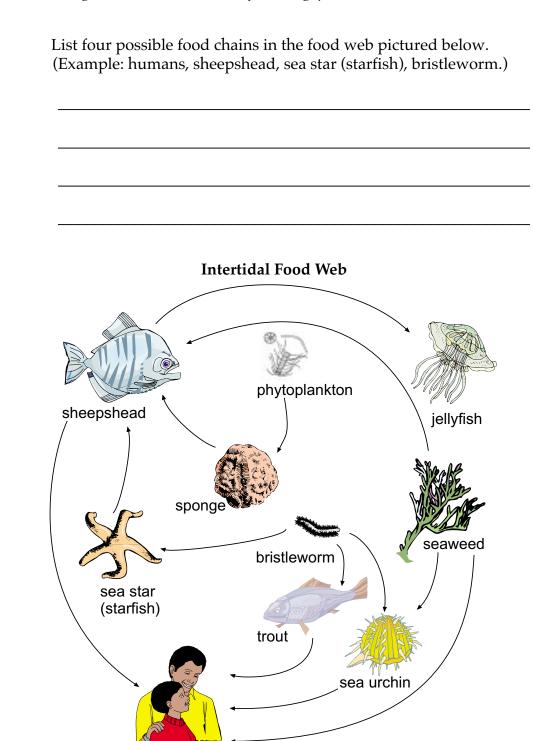
- primary
- B. secondary
- C. tertiary

symbiotic relationships

- 7. one organism benefits while A. commensalism the other is unaffected 8. one organism benefits while В. mutualism
- 9. both organisms benefit C. parasitism

Practice

Answer the following using complete sentences.


1. What are some causes for a break in the ocean's food chain? _____

2. How might a break in the ocean's food chain affect us?

3. How is a *food web* different from a *food chain*?

Use the diagram below to answer the following question.

humans

Lab Activity: Ocean Food Webs

Investigate:

• Create an ocean food web mural to study individual food chains and their place in a food web.

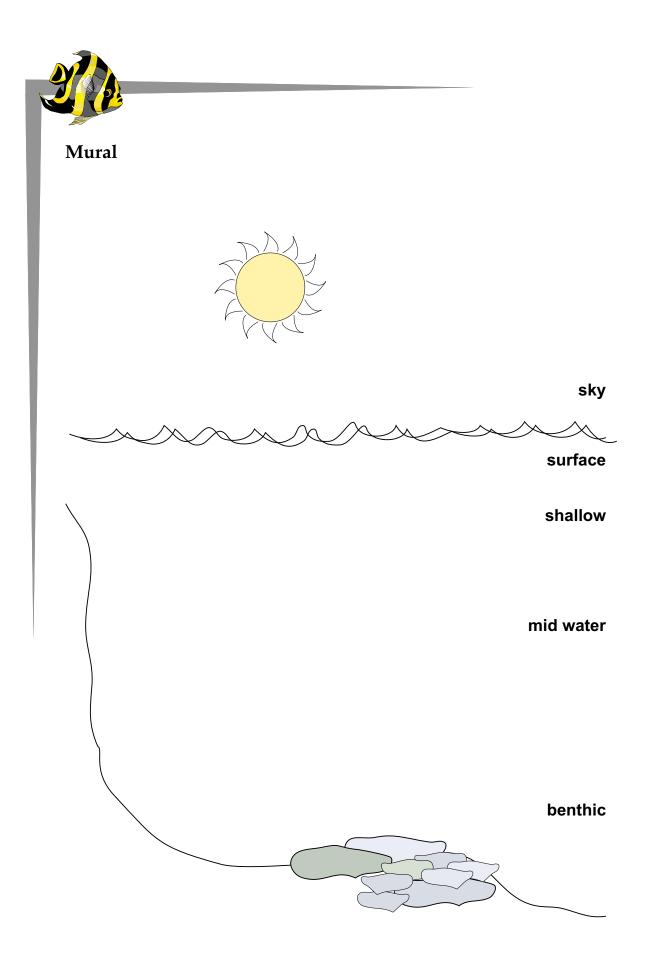
Materials:

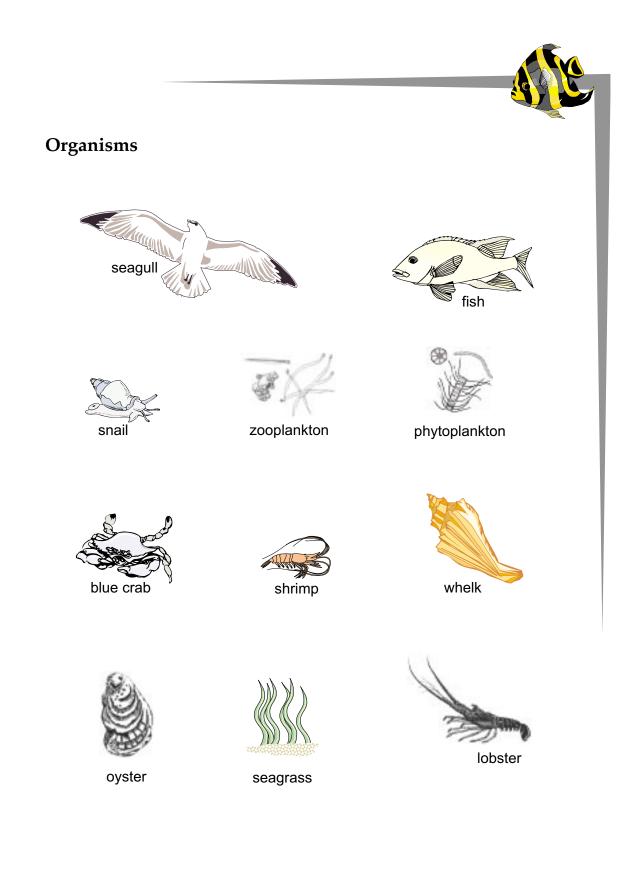
- mural page
- Inside Scoop chart
- page of organisms
- glue or tape
- colored pencils

Procedure:

- 1. Use a **copy** of the mural on page 220 of an estuarine environment.
- 2. Use a **copy** of the page of organisms. **Cut** out each of the marine organisms (and their names) from the page of organisms on 221.
- 3. Color each marine organism (optional).
- 4. **Preview** the **Inside Scoop** chart on the following page for each plant and animal in the estuary community. The **Inside Scoop** chart will help you find what each animal and plant depends upon for survival, and where each is found in the water column of the estuary mural. **Place** each organism in the correct area of the mural.
- 5. Consider the organization and layout of the food web before you actually paste or tape each organism in place. Be sure to use all the space represented on the page of the estuary mural. **Hint**: Important animals that are eaten by many others (zooplankton and phytoplankton) should be placed in the center of the estuary mural.
- 6. For each animal or plant used from the page of organisms, show what each animal or plant depends upon. To do this, **draw** an arrow from the animal or plant *to what it depends upon*. To make the food web neater, cross as few lines as possible. **Color** or **code** web lines for each organism.

7. Each animal or plant should be placed in its correct **position** in the water column. Positions are stated in the **Inside Scoop** chart.


The Inside Scoop				
Organism	What the Organism Eats	Where the Organism Lives		
zooplankton	phytoplankton	mid-water to surface		
phytoplankton	energy from the sun	surface waters		
oyster	phytoplankton/zooplankton	benthic		
snail	seaweed	benthic		
seagrass	energy from the sun	shallow water/benthic		
fish	shrimp	mid-water to surface		
blue crab	shrimp, snails, oysters, and whelks	benthic		
shrimp	zooplankton	mid-water to grass beds		
whelk	snails and oysters	benthic		
seagull	shrimp, fish, oysters, crabs, snails, whelks	above surface of water		
lobster	crabs, whelks, oysters	benthic/sea grasses		


Analysis:

- 1. Which organisms are *producers*? ______
- 2. Which organisms are the top *carnivores*? _____
- 3. Which animals are only *herbivores*?_____

Which animals are both <i>herbivores</i> and <i>carnivores</i> ? Which animals are only <i>carnivores</i> ?	
What would happen if <i>all</i> the <i>producers</i> were wiped out?	

Practice

Use the list below to write the correct term for each definition on the line provided.

carbohydrates carnivore consumers decomposers food chain food web	hyd lipio met min	bivore omnivore lrolysis photosynthesis ds producers tabolism protein nerals scavengers rients	
	1.	animals that eat the remains of alreader dead animals and plants	ad
	2.	the process plants use to make the sugar glucose from water, carbon dioxide, and the energy in sunlight	
	3.	organism that eats both plants and animals <i>Example</i> : humans, killifish	
	4.	an organism that eats animals <i>Example</i> : lion, shark	
	5.	organism that eats only plants <i>Example</i> : sheep, manatee	
	6.	organisms that eat other organisms	
	7.	organisms that make their own food through photosynthesis	d
	8.	interrelated food chains in an ecosystem; the feeding relationship between various plants and animal	
	9.	the transfer of energy from the sun producers to consumers; describes groups of organisms, each of which dependent on another for food	

10. naturally occurring, inorganic elements and compounds found in water and soil that do not contain the element carbon 11. high energy nutrients such as fats and oils 12. a chemical reaction where water is used to break down compounds; typically occurs when food is digested 13. compounds containing the elements carbon, hydrogen, and oxygen 14. a chemical process in which animals break down and utilize nutrients _ 15. any organic or inorganic material that an organism needs to metabolize, grow, and reproduce 16. organisms that eat dead plants and animals, as well as animal wastes 17. complex organic compound made up of amino acids

Practice

Match each definition with the correct term. Write the letter on the line provided.

1.	a permanent, close relationship between two organisms that benefits at least one of them	A.	biomass
2.	one organism benefits and the	B.	commensalism
3.	other is harmed a symbiotic relationship in which	C.	krill
0.	both organisms benefit	D.	mutualism
4.	a symbiotic relationship in which one organism benefits and the	D.	mataulion
	other is unaffected	E.	parasitism
5.	shrimp-like zooplankton		
6.	small, usually microscopic animal plankton that float or drift in the ocean	F.	phytoplankton
7.	small, usually microscopic plant plankton that float or drift in the ocean	G.	primary consumers
8.	total amount of organisms per unit volume	H.	secondary consumers
9.	organisms that eat secondary consumers but may also eat primary consumers and producers	I.	symbiosis
10.	organisms that eat primary consumers and may also eat producers	J.	tertiary consumers
11.	organisms that eat plants (producers)	K.	zooplankton

Unit 10: Ocean Zones

Unit Focus

This unit describes the marine biome's two major regions: pelagic (water) and benthic (bottom) environments. Students will learn the characteristics of each of these marine environments and how marine organisms adapt to pelagic and benthic environments.

Student Goals

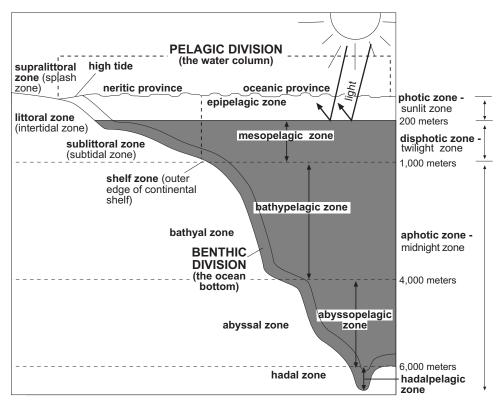
- 1. Identify the pelagic and benthic environments within the marine biome and the zones into which each is further divided.
- 2. Recognize organisms that live within each marine zone or environment.
- 3. Give examples of adaptations marine organisms use to live in pelagic or benthic communities.

Vocabulary

Study the vocabulary words and definitions below.

abyssopelagic zone	. the depths of the ocean between 4,000 and 6,000 meters; in the aphotic or midnight zone
aphotic zone	. area of ocean where light does not penetrate; also called the <i>midnight zone</i>
bathypelagic zone	. the depths of the ocean between 1,000 and 4,000 meters; in the aphotic or midnight zone
benthic	. bottom environment; refers to animals living on or in the seabed
biome	. large-area ecosystem sharing similar characteristics; an environmental unit
disphotic zone	. dimly lit region of the ocean where there is not enough light to carry on photosynthesis; also called the <i>twilight</i> <i>zone</i>
epifauna	. animals that live <i>on</i> the surface of the seabed
epipelagic zone	. upper layer of water extending to depth of 200 meters; in the photic or sunlit zone

habitat	. specific area or type of environment in which an organism is found
hadalpelagic zone	. the depths of the ocean below 6,000 meters in the deep-ocean trenches; in the aphotic or midnight zone
infauna	. animals that live <i>within</i> the sediments of the seafloor
littoral zone	. area between the tides; also called the <i>intertidal zone</i>
mesopelagic zone	. middle layer of ocean water between 200 and 1,000 meters; in the disphotic or twilight zone
nekton	. free-swimming organisms
neritic province	. waters over the continental shelf; near- shore zone
oceanic province	. waters beyond the continental shelf; open-ocean zone
pelagic	. of or pertaining to the seas or oceans
photic zone	. lighted region of the ocean; area where photosynthesis can occur; also called the <i>sunlit zone</i>


plankton	small, usually microscopic plant or animal organisms that float or drift in the ocean
province	. a particular area or region
rocky coasts	. shores made up of solid rock and usually steeper than sandy beaches
sessile	. organisms that are attached to a surface and cannot move around
sublittoral zone	benthic area of the continental shelf below the low-tide area; also called <i>subtidal</i>
supralittoral zone	. dry area above the high-tide line; sometimes called the <i>spray</i> or <i>splash zone</i>
surf zone	. the area of crashing waves along a sandy beach
tide pools	. small habitats formed when spaces between rocks retain water at low tide

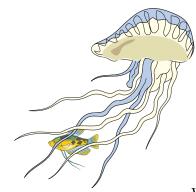
Introduction: Ocean Zones—A Range of Environments

Oceanographers and ecologists have divided up different parts of the marine world according to their location and characteristics. Because each region is a unique environment, or **habitat**, it is better suited for certain types of organisms rather than others. Each of these habitats make up an *ecosystem*: a community of organisms and the nonliving environment with which they interact.

A large-area ecosystem, or environmental unit, with similar characteristics is called a **biome**. There are two biomes in the aquatic, or water, environment. One is the *freshwater* biome of rivers, lakes, ponds, and streams. In this unit we will study the other large-area ecosystem—the *marine* biome—which includes the oceans, bays, and seas, as well as the shores at the edges of the oceans and the ocean floor itself.

marine biome

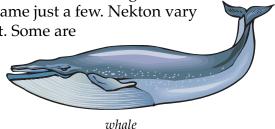
The Marine Biome


The marine biome can be divided into two major *divisions* or regions: the **pelagic**, or water environment, and the **benthic**, or bottom environment. These two divisions are separated by distinct differences in their water

and sediments. Within each division there are several zones. Each of these zones has local organisms that have adapted to its range of environmental changes. For example, organisms living in a particular zone in the pelagic division can withstand its range of temperature, light, salinity, and pressure.

Pelagic Environment: The Largest Region of the Marine World

The pelagic environment begins at the shore and includes all the waters of the oceans. The effect of the pelagic environment on the Earth's land is immeasurable: It provides needed oxygen and food, and it influences both climate and weather. Its rich and varied community includes some of the largest—and the most frightening of marine animals. But its food chain is dependent on its smallest organisms, called **plankton**.


Portuguese man-of-war is a large plankton that floats or drifts with the current.

Pelagic Organisms. Pelagic (ocean) organisms are classified in two groups: those that swim (nekton) and those that do not swim (plankton). Most plankton—with the exception of the jellyfish and the Portuguese man-of-war—are very small organisms that float or drift with the currents. There are both plant and animal plankton. Plant plankton (*phytoplankton*) grow only in shallow or surface waters where there is enough sunlight for

photosynthesis. Animal plankton (*zooplankton*) are also found in these waters where they can feed on the plant plankton.

The **nekton** are those organisms that are free-swimming, such as fish, squids, sharks, and whales, to name just a few. Nekton vary greatly in the way they move and eat. Some are

herbivores (plant-eating), some are *carnivores* (meat-eating), and some eat whatever they can find. Nekton populate all the regions of the pelagic environment.

whute

Scientists have divided the pelagic environment into two major **provinces**: the neritic and oceanic. The **neritic province** includes the water and life over the continental shelf, which accounts for about 10 percent of ocean water. The rest of the waters—nearly 90 percent of the ocean's surface—are in the **oceanic province**, or the deep waters away from land.

The Neritic Province Characteristics

- the area above the continental shelf
- 10% of the ocean's surface
- more productive than adjacent ocean waters
- 90+% of the world's commercial fishing
- subject to tidal forces that help to mix the water column
- higher mixing insures continual supply
 of nutrients from deeper waters
- higher supply of nutrients and sunlight results in greater growth of phytoplankton

Neritic Province. The neritic province is greatly influenced by being near land. Rivers run off into this region's bays and estuaries. This runoff adds large amounts of fresh water, thereby reducing the salinity in areas near the river mouths. In shallow areas, however, heating by the sun may increase evaporation, thus raising the salinity. Waters in the neritic province are shallow enough to be penetrated by light. Light enables plants to carry out photosynthesis and thrive. Consequently, these sun-filled, shallow waters support large areas of plant growth that smaller

organisms feed on. Here the temperature of the water changes with the seasons.

Most of the neritic province is in the **photic zone**, or *sunlit zone*. The photic zone is the lighted region of the ocean. Because this zone gets light, plants can carry out *photosynthesis* (food-making), and large numbers of phytoplankton and other marine algae can grow and reproduce. The neritic province is also the only area of the ocean where submerged plants such as seagrasses and seaweeds are found. With so many nutrients

The neritic province is also the only area of the ocean where submerged plants such as seagrasses and seaweeds are found.

and plankton present, these waters may also appear murky or cloudy. Over 90 percent of all organisms sold commercially, such as shrimp, crabs, lobsters, oysters, and fish, are harvested, or caught, in this province.

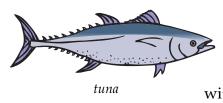
Oceanic Province. The conditions in the open ocean, or oceanic province, are much more stable, or constant, than the conditions over the continental shelf. The temperature and the salinity in these waters do not

change very much. Because the water is clearer due to lack of nutrients, light penetrates farther into this region. Although the photic zone is only a small part of the oceanic province, it contains most of the ocean's life.

Oceanic Province				
zone	depth (in meters)	light	organisms	
Epipelagic	0-200	yes—photic zone or sunlit zone	fish, sharks, plankton, jellyfish	
Mesopelagic	200-1000	very little—disphotic or twilight zone	octopus, fish, squid, krill	
Bathypelagic	1000-4000	none—aphotic zone or midnight zone	fanfin, anglerfish, gulper	
Abyssopelagic	4000-6000	none—aphotic or midnight zone	blackdevil, anglerfish, snipe eel	
Hadalpelagic	6000+	none—aphotic or midnight zone	rattail fish, isopods, worms	

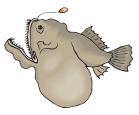
Beneath the photic zone, the water quickly becomes very cold. The temperature decreases with depth—the deeper you go, the colder the water. Beyond 300 meters deep, however, the temperature remains fairly constant—about 4°C, or just a few degrees above freezing. Pressure also increases with depth.

Animals that live in the deep ocean must adapt to low temperatures, high pressures, and very little or no light. Many animals move up to the photic zone to feed. Others live on the dead plants and animals that sink from shallower waters or prey on living animals. Some animals produce their own light and "glow in the dark" to either attract prey and mates or to help them find food.


The oceanic province can be divided into five stacked layers, or zones, based on depth. Each zone supports different types of life.

The **epipelagic zone** ranges from the surface to about 200 meters (about 600 feet) deep. This area is in the *photic zone* or sunlit zone. Consequently, phytoplankton thrive and support large numbers of zooplankton

Some animals produce their own light.



and fish higher up in the food chain, like
 tuna. Most fish in this region are
 countershaded—that is, darker on top than
 on the bottom—which helps them blend in
 with the lighted waters.

Below this lighted region is the **disphotic zone**, also known as the *twilight zone*. The disphotic or twilight zone corresponds with the **mesopelagic zone**. The mesopelagic zone ranges from 200 meters to 1,000 meters in depth. Life here is less plentiful and varied than in the epipelagic zone because food is scarce and difficult to locate. Most fish in this region have light spots on their bodies or are silvery in order to reflect what little light is present. Many weird-looking fish are also found here with features such as snake-like bodies, needle-sharp teeth, or huge eyes.

Below the twilight zone is the **aphotic zone** or *midnight zone*. The *aphotic zone* is an area where light does not penetrate. Ninety percent of the ocean is in this zone. In the aphotic zone there are deep-ocean regions of total darkness, cold temperatures, high pressure, and limited food. These regions include the **bathypelagic zone** (depths between 1,000 and 4,000 meters), the **abyssopelagic zone** (depths between 4,000 and 6,000 meters), and the **hadalpelagic zone** (waters in the deep-ocean trenches more than 6,000 meters).

In these zones, conditions remain constant throughout the year, and food is always scarce. Organisms in these zones have to take advantage of every possible meal. Deep sea fish have adapted to the harsh conditions of the deep. Some deep sea fish have huge mouths and long, sharp teeth to assist them in catching prey in their dark environment. Other deep sea fish have mouths that are pointed upward possibly to assist them in

The anglerfish attracts prey with a lure that hangs over its mouth.

The gulper can eat prey much larger than itself.

catching scraps of food that fall from the waters above.
Some common organisms in these regions that have adapted to the harsh conditions are the anglerfish and the gulper. The anglerfish attracts its prey with a lure that hangs over its mouth, while the gulper fish has a huge mouth and elastic stomach which enables it to eat prey much larger than itself.

Benthic Environment

Regardless of the depth of the water, the benthic environment includes all of the area at the bottom of the ocean. It includes the sediments along the shore, continental shelf, and the ocean basin. It also includes all organisms living along the ocean floor. The makeup of the benthic division will vary depending on the types of sediments present. Scientists have divided the benthic environment into six regions, or locations. See the chart below.

Benthic Environment			
supralittoral	supralittoral above the high-tide line; splash zone		
littoral between the tides; intertidal zone			
sublittoral below low-tide line on the continental shelf; subt			
bathyal	between 200 and 4,000 meters on continental slope		
abyssal	between 4,000 and 6,000 meters on abyssal plains		
hadal	below 6,000 meters in deep-ocean trenches		

Benthic Environment along the Shoreline. Three of the major zones or regions within the benthic environment are found along the shoreline (see Unit 8). Above the high-tide line is the **supralittoral zone**, also called the *splash zone*, a dry region that only gets wet when splashed by waves. Very few organisms can survive in this zone. Some algae, crabs, and barnacles, however, have adapted to life here.

Closer toward the ocean, there is an area continually covered and uncovered by cycles of the tide—the **littoral zone**. This area, also called the *intertidal zone*, is one of the harshest places for plants and animals to live. To survive here, organisms have to deal with exposure to saltwater and to air, the risk of drying out, and the constant pounding of the waves and tides.

Below the littoral zone lies the **sublittoral zone**. This area is also called the *subtidal zone*. It extends from the low-tide line to the edge of the continental shelf. This area is always under water and provides a stable environment for the largest number of benthic organisms.

Some organisms in the sublittoral zone have structures that help them cling to hard surfaces. These clinging structures prevent the organisms from being swept away by the waves and currents. A "boring" sponge is

an example of a sublittoral organism that has adapted to this environment. This sponge secretes an acid that allows it to drill into rocks and shells. The sponge is protected by the rock's or shell's hard outer covering. You may have found shells on the beach which are pockmarked with holes from the boring sponge.

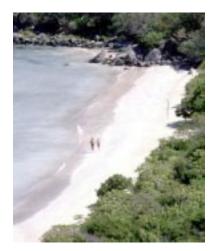
Another animal that lives in the sublittoral zone is the sea star (starfish). Sea stars cling to rocks and other hard surfaces by means of suction cups located on their tubefeet. The pounding waves cannot dislodge the sea stars from their locations on the rocks. Barnacles also live in the sublittoral zone. (Many also live in upper zones.) These organisms have the strongest method for clinging to hard surfaces. They cement themselves with a type of glue to rocks and other hard surfaces.

Some organisms in the sublittoral zone have flattened bodies. Having a flat body minimizes the animals' exposure to wave impact. The flounder is a flat fish that buries itself in the sand to avoid wave turbulence and to hide from predators.

Plants have also adapted to live in the sublittoral zone. Kelp and rockweed are types of marine algae which anchor themselves to rocky surfaces by a tissue called a *holdfast*. A holdfast is similar to a large root.

Benthic Environment beyond the Continental Shelf. Beyond the edge of the continental shelf, the benthic environment is relatively uniform. The *bathyal zone* covers the area of the continental slope or the region between 200 meters and 4,000 meters in depth. The *abyssal zone* is the region of the ocean floor, including the abyssal plains, that is between 4,000 meters and 6,000 meters in depth. In the sediments of the trenches is the *hadal zone*— the deepest of all.

Benthic Organisms


Because plants need light for photosynthesis, they inhabit only those benthic environments in the neritic zone or along shallow coastal areas and the intertidal zones. Animals, however, inhabit all depths of the benthic environment. Crabs, worms, sea stars (starfish), and bacteria are some common ones. Benthic organisms can be classified by either their movement or their location. Organisms that attach themselves to the seafloor are called **sessile**. Some common sessile benthic animals include oysters, sponges, coral, and barnacles. Sessile organisms feed by using parts of their body to filter out food particles suspended in the water. Most

of these sessile organisms depend on waves and currents to bring them food. Organisms capable of movement are considered to be *mobile*. Mobile scavengers can freely move about in search of prey or to scavenge for a meal of remains from the ocean bottom.

Benthic organisms are also classified according to where they live in the benthic environment. They can either live on the top of the ocean floor or within the sediments. **Epifauna** are those animals that live *on* the surface of the seabed. Some examples include crabs, sea stars, sea urchins, and sea cucumbers. Most epifauna either hunt prey or scavenge for remains. Animals that live *within* the soft sediments are called **infauna**. Common infauna include worms and clams. These animals may feed on other infauna, filter their food from the water, or directly take in sediments from which they filter their food.

Sandy Beach Environment

upper beach

intertidal zone

Thinking of a vacation at the beach brings up images of sandy white beaches. Sandy beaches are the most familiar environments along the coast and are composed of sand or loose sediment. Sandy beaches come in a variety of sand types: black lava sand, white quartz sand, or even crushed coral sand. The loose sediment along the coastline is easily shifted and transported by wind and water. Because the sandy beach area is constantly changing, this environment is a harsh place to live for marine plants and animals.

The upper beach area contains beach plants consisting of trees, bushes, and grass. The roots of these plants play an important role in building beach and dune areas. The plants' roots hold onto the sand and prevent sand erosion from wind and wave action.

The environment on the beach changes as you near the water. The area of wet sand on the beach is the *intertidal zone*

or the *littoral zone*. This area of the beach is sometimes covered with water and at other times not. When the intertidal area is covered with water, it houses a variety of marine animals. When the tide goes out and the intertidal area is exposed, its marine life retreats to deeper waters or burrows in the wet sand.

surf zone

The region of crashing waves along a sandy beach is called the **surf zone**. The surf zone moves with the tide as the tides alternate between high and low. Water in the surf zone is in constant motion. This constant motion moves sand about with each passing wave. Marine life in the surf zone is constantly swept up and down the beach.

The mole crab is an example of a marine organism that has adapted to life in the turbulent surf zone. The mole crab has paddlelike appendages that it uses to dig into the

sand as waves approach it. Once buried in the sand, the mole crab then sticks its feather-like appendages above the sand to filter out microscopic food from the water. The body of the mole crab is shaped like a jelly bean and has a smooth exterior. The shape of the mole crab allows it to swim with minimal resistance through the swirling surf.

The Rocky Coast

Shores that are composed of solid rock are called **rocky coasts**. The western coastline of the United States is predominately rocky. Rocks of rocky coasts provide a surface for marine organisms to attach themselves. Just as with sandy beaches, the rocky coast has definite habitat zones.

Shores composed of solid rock are called rocky coasts.

There are four zones of habitats: upper intertidal, mid-intertidal, lower intertidal, and subtidal.

The *upper intertidal zone* is also known as the *splash zone*. This area is above the high tide mark and receives moisture from the ocean spray. The damp rocks provide a perfect environment for the growth of *blue-green bacteria* or *algae*. The periwinkle snail grazes on algae in the upper intertidal zone.

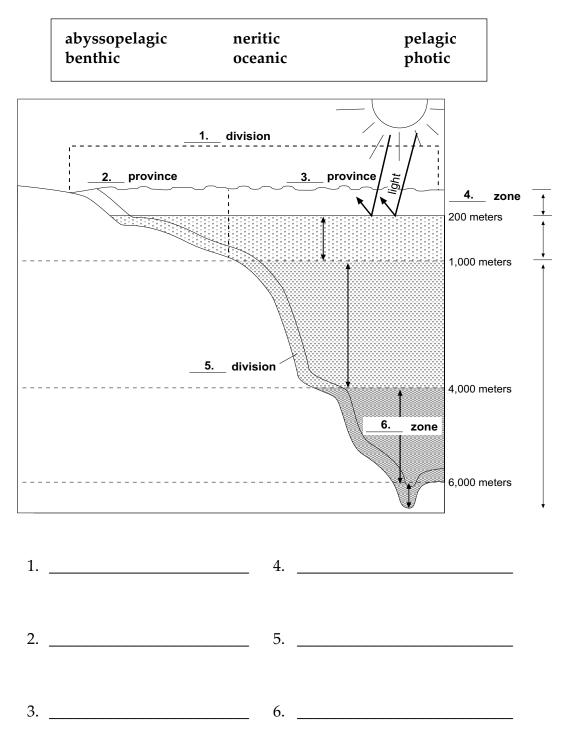
The *mid-intertidal zone* is located below the upper intertidal zone. The midintertidal zone is characterized by barnacles, mussels, and seaweeds. Barnacles are attached to the rocks so strongly that even the most powerful wave cannot dislodge them. During high tide, barnacles are covered by water. Barnacles feed on plankton during high tide. Barnacles are filter feeders and whip their feathery appendages called *cirri* to capture food. During low tide when the tide is out, barnacles shut their shells tight to keep from drying out. Barnacles have sharp, overlapping shells that protect them from predators. The dog whelk, a marine snail, is the only predator that can penetrate the tough exterior shell of the barnacle. The dog whelk secretes an acid from its foot. This acid softens the barnacle shell and allows the whelk to drill into the barnacle.

Beneath the mid-intertidal zone is the *lower intertidal zone*. This area of the rocky coast is dominated by seaweeds. During low tide, pockets between the rocks retain water forming small pools called **tide pools**. Tide pools create habitats for a variety of organisms such as algae, small fish, and invertebrates.

The *subtidal zone* is completely underwater and has an abundance of marine life. Sea urchins feed on giant kelp. Sea stars suction themselves to rocks. Sea anemones, crabs, and lobsters hide in the rock crevices in the subtidal zone.

Summary

The marine biome contains two major divisions or regions: *pelagic* (water) and *benthic* (bottom) environments. The pelagic environment begins at the water's edge and includes two major provinces—the neritic province (the water over the continental shelf) and the oceanic province (the open-water zone). The oceanic province is divided into five stacked layers. The



Crabs and sea star (starfish) are example of epifauna that live on the surface of the seabed.

benthic environment is divided into six regions, according to their location in or on the sediment on the ocean floor. Organisms in each layer or region differ because they are adapted for the conditions in that specific region.

Use the list below and the chart on page 231 to complete the following diagram. Write the correct name of each **zone** *or* **division** *on the line provided.*

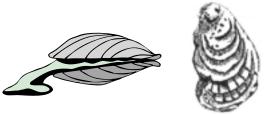
Use the information in this unit and the charts on pages 233 and 234 to answer the following using short answers.

- 1. What is the name of the pelagic province over the continental shelf?
- 2. Which oceanic zone includes the photic zone?
- 3. Which zone in the benthic division includes the abyssal plains on the deep-ocean floor between 4,000 meters and 6,000 meters?
- 4. Which benthic zone includes the deep-ocean trenches? _____

5. How many meters deep does the epipelagic zone extend? _____

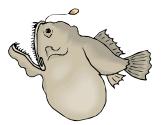
- 6. Which benthic division is seldom wet? _____
- 7. What is another name for the mesopelagic zone? _____
- 8. In which zone are the most plant plankton found? _____
- 9. Why is the neritic zone high in nutrients and marine life?

10.	Which pelagic zones are aphotic?
11.	Which pelagic zone is the deepest?
12.	Which pelagic zone is located at a depth between 4,000 and 6,000 meters?
13.	State three adaptations for marine organisms that live in the benthic sublittoral zone.
14.	Sandy beaches come in a variety of sand types. List three sand type
15.	Why is the sandy beach a harsh area for marine animals to live?

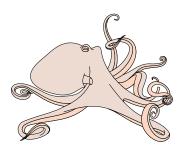

Use each diagram and description below to answer the questions that follow. Circle the term that best **completes the sentence** *or* **describes the organism***.*

This fish below lives in the waters over the continental shelf.

- 1. This fish is (**pelagic** / **benthic**).
- 2. It is found in the (**neritic** / **oceanic**) provinces.
- 3. The fish is an example of a (**plankton** / **nekton**) because it is a good swimmer.


Clams and oysters live in the area of sediments between the high-tide line and the low-tide line. Clams live within the sand, while oysters attach themselves to the surface.

- 4. Clams and oysters live in the (**supralittoral** / **littoral** / **sublittoral**).
- 5. Both clams and oysters are (**benthic** / **nekton** / **plankton**).
- 6. Because oysters are attached and do not move, they are (**mobile** / **sessile**).
- 7. Clams would be classified as (**epifauna** / **infauna**) because they live in the sand.

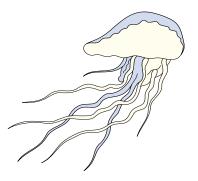


The anglerfish below lives in total darkness at about 2,000 meters in depth. It uses a lighted lure to attract other fish as prey.

8. The anglerfish above lives in the (**mesopelagic** / **bathypelagic** / **abyssopelagic**) zone.

The octopus below lives in the open ocean in the twilight where there is only a little light.

- 9. This octopus lives in the (**neritic** / **oceanic**) province.
- 10. If the octopus is in the twilight area, it would be in the (**epipelagic** / **mesopelagic**) zone.



Brittle stars and sponges below are common on the sediments of the continental shelf.

- 11. Both of these organisms would be considered (**benthic** / **nekton** / **plankton**).
- 12. They would be found in the (sublittoral / bathyal / abyssal) zone.
- 13. The sponge would be classified as (**epifauna** / **infauna**) because they live on the surface.

Jellyfish are very common in near-shore waters over the continental shelf. As they float along with the currents, they are often washed into beaches by waves.

- 14. Jellyfish are found in the (**pelagic** / **benthic**) zone.
- 15. They would be considered (infauna / nekton / plankton).

Use the list above each section to complete the statements in that section. One or more terms will be used more than once in the first section.

	benthic biome epifauna freshwater	infauna marine nekton	neritic oceanic pelagic	photic plankton sessile
[.	A large-area eco	osystem with si	milar characteris	stics is called a
<u>2</u> .	1			
	(lake) and		(sea).	
3.	Two major divis	Ū		
		(w	ater) and	
	(bottom).			
ł.	The largest regi	on of the marir en		
5.	The pelagic env		vided into major d	
) .	The		_ province inclue	des the water and life

over the continental shelf.

- The ______ province includes nearly 90 percent of the ocean waters.
- Most of the fish sold commercially are caught in the
 ______ province and in the
 ______ zone.
- Photosynthesis takes place in the lighted region of the ocean, which is known as the ______.
- 10. Beneath the _____ zone, the water quickly becomes very cold and the pressure increases.
- 11. Oysters, coral, and sponges are ______ benthic animals, meaning they attach themselves to the seafloor.
- 12. The jellyfish and the Portuguese man-of-war are large_______ that float or drift with the currents.
- 13. Fish, squid, and whales are free-swimming organisms called
- 14. Benthic animals living on the surface of the ocean floor are classified as ______.
- 15. Benthic animals living within the sediments are classified as

algae	littoral	splash
barnacles	rocky	surf
intertidal	small fish	tide
invertebrates		

- 16. ______ are organisms that cement themselves with a type of glue to rocks or other hard surfaces and live in the sublittoral zone.
- 17. The area of wet sand on the beach is the

	zone or the	
zone.		

.

- Water in the _____ zone is in constant motion.
- 19. The western coastline of the United States is made up mostly of ______ coasts.
- 20. The upper intertidal zone of the rocky coast is called the ______ zone.
- 21. Some marine organisms that can be found in a tide pool are

_____, _____ and

22. Pockets between rocks retain water during low tide forming small pools called ______ pools.

Lab Activity: Something's Environmentally Fishy!

Investigate:

- Identify adaptations that marine organisms utilize to survive in specific marine environments.
- Identify a marine organism's environment from observations of its external features.
- Demonstrate knowledge of marine environments.

Materials:

- butcher paper or poster board
- newspaper

- cornstarch
- paint brushes or sponges

markers and paint

- glue
- puilt brusik
- variety of arts and crafts supplies

Procedure:

- 1. Select a marine environment or zone of your choice. Choose from oceanic environments (epipelagic, mesopelagic, bathypelagic, abyssopelagic, hadalpelagic zones) or from benthic environments (rocky beaches, sandy beaches, supralittoral, littoral, sublittoral, bathyal, abyssal, or hadal).
- 2. Once you have determined a marine environment, choose a marine organism (or design one of your own) that illustrates unique characteristics for survival reflecting the marine environment you have selected. (You may scan a marine science textbook for marine organisms or conduct a search on the Internet by doing a keyword search for your particular marine environment.)
- 3. Make a model of the marine organism. The model of your organism should be true to life size, slightly larger, or made to scale depending upon the organism you

choose. The organism model should display the adaptations that the organism needs for survival in the environment you have selected. Be sure to include correct coloration, appendages, etc.

- 4. Include with your model a name tag and description card. The name tag should state the organism's common name, and the description card should summarize where the organism lives and adaptations to its environment.
- 5. After completing your model, display your model in a mural setting or arrange your models to simulate a marine environment with other student models. Be sure that all the benthic organisms are displayed in their correct environment, and all the pelagic organisms are displayed in their correct environment.

Use the list below to write the correct term for each definition on the line provided.

biome benthic habitat nekton neritic province		oceanic province pelagic plankton province
	1.	waters beyond the continental shelf; open-ocean zone
	2.	waters over the continental shelf; near- shore zone
	3.	a particular area or region
	4.	free-swimming organisms
	5.	small, usually microscopic plant or animal organisms that float or drift in the ocean
	6.	of or pertaining to the seas or oceans
	7.	bottom environment; refers to animals living on or in the seabed
	8.	large-area ecosystem sharing similar characteristics; an environmental unit
	9.	specific area or type of environment in which an organism is found

Match each definition with the correct term. Write the letter on the line provided.

 1.	area of ocean where light does not penetrate; also called the <i>midnight zone</i>	A.	aphotic zone
 2.	lighted region of the ocean; area where photosynthesis can occur; also called the <i>sunlit zone</i>	B.	disphotic zone
 3.	dimly lit region of the ocean where there is not enough light to carry on photosynthesis; also called the <i>twilight zone</i>	C.	photic zone
 4.	the depths of the ocean below 6,000 meters in the deep-ocean trenches; in the aphotic or midnight zone	А.	abyssopelagic zones
 5.	the depths of the ocean between 4,000 and 6,000 meters; in the aphotic or midnight zone	B.	bathypelagic zone
 6.	the depths of the ocean between 1,000 and 4,000 meters; in the aphotic or midnight zone	C.	epipelagic zone
 7.	middle layer of ocean water between 200 and 1,000 meters; in the disphotic or twilight zone	D.	hadalpelagic zone
 8.	upper layer of water extending to depth of 200 meters; in the photic or sunlit zone	E.	mesopelagic zone

Use the list below to write the correct term for each definition on the line provided.

epifauna infauna littoral zone rocky coasts sessile	sublittoral zone supralittoral zone surf zone tide pools
 1	small habitats formed when spaces between rocks retain water at low tide
 2	. the area of crashing waves along a sandy beach
 3	shores made up of solid rock and usually steeper than sandy beaches
 4	animals that live <i>within</i> the sediments of the seafloor
 5	animals that live <i>on</i> the surface of the seabed
 6	organisms that are attached to a surface and cannot move around
 7	benthic area of the continental shelf below the low-tide area; also called the <i>subtidal zone</i>
 8	area between the tides; also called <i>intertidal zone</i>
 9	. dry area above the high-tide line; sometimes called the <i>spray</i> or <i>splash</i> <i>zone</i>

Unit 11: Near-Shore Ecosystems

Unit Focus

This unit previews two coastal environments, wetlands and coral reefs. These environments are important in maintaining the balance of life both in the sea and on land. Students will study wetlands such as estuaries, mudflats, saltmarshes, swamps, and mangroves. Students will also investigate the formation of coral reefs and the diversity of life in the reef environment.

Student Goals

- 1. Define wetland.
- 2. Explain the importance of wetlands.
- 3. State several examples of wetland environments.
- 4. Describe the formation of a coral reef.
- 5. Explain the importance of coral reefs.
- 6. Describe the negative impact humans have on wetlands and coral reefs.

Vocabulary

Study the vocabulary words and definitions below.

atoll	ring-shaped coral island usually located in deep water; developed from fringing reef formed around a volcanic island or landmass
barrier reef	coral formation that is separated from land by water (a <i>lagoon</i>)
coral reef	underwater community of living and dead corals; supports life in warm tropical waters
detritus	decaying plant and animal material
dredge	to remove underwater land or sediments by suction or digging
estuary	the mouth of a river or bay where freshwater and saltwater mix; the part of the river where its current meets the ocean's tide
Everglades	large, mixed wetland area located in southern Florida
fringing reef	coral reef that grows around the edge of a volcanic island or landmass
hammock	wooded area surrounded by marsh

lagoon	. water separating land from a coral reef or sand bar
mangrove	. tree found in muddy tropical wetlands whose twisted roots grow partly above ground
mudflat	. slightly sloping beach with dark, muddy sand, no marsh grasses, and very little wave action
salt marsh	. low, coastal wetland covered by salt- tolerant grasses
swamp	. wooded wetland located further inland than marshes
temperate	. describes moderate climate zone between the tropics and the poles
wetlands	. an area that is a combination of water and land; may be exposed, partially submerged, or covered with water

Introduction: Near-Shore Ecosystems—Wetlands and Coral Reefs

Two habitats that thrive along the ocean's coasts are **wetlands** and **coral reefs**. These two near-shore habitats have become familiar topics and issues in Florida news. More scientists are becoming aware of just how important wetlands and coral reefs are to maintaining the balance of life both in the sea and on land.

The term *wetlands* describes any area that is a combination of land and water. A *wetland* at different times may be totally covered with water, partially submerged, or, on occasion, dry and exposed to the sun and wind. Its state often depends on tides, the season, the weather, and many other factors. Because wetlands are near shorelines, some wetlands have been destroyed by developers who have filled them in and built ocean-front residences and recreational areas in their place.

Coral reefs offer us one of the more colorful environments in nature.

Coral reefs offer us one of the more colorful environments in nature. The panorama of lively tropical colors in coral reefs comes from the living coral animals that compose the reef, the many animals that attach themselves to the layers of limestone, and the large number of diverse swimming animals competing for food in this community. The commercial value of coral has prompted some people to destroy these living monuments in an attempt to turn a profit.

Wetlands: A Zone Between Land and Sea

Purifying Water

Wetlands serve as a transitional zone for water as it makes its way to the sea. Water runoff from land contains wastes, or pollutants, as it flows into wetlands. Bacteria on the roots of plants and trees in wetlands break down pollutants into compounds that are less harmful to the chemical balance of the water in rivers, lakes, and the ocean. However, polluted stormwater runoff is becoming a greater problem in Florida as wetlands are destroyed.

A Nursery for Aquatic Animals

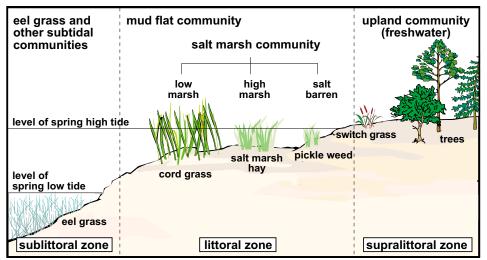
Wetlands provide an ideal breeding ground for many aquatic animals. Most wetlands have a muddy substrate—or a floor—that provides food and shelter for organisms. On this floor, protected by water, animals breed and lay their eggs. When the eggs hatch, the young thrive on the plankton and tiny pieces of decaying plants and animals in the waters of the wetlands. Shallow water protects them from ocean predators, or larger animals that would feed on them. Some animals, such as the snapper, only spend the first part of their life in the wetlands and then return to the open ocean as adults. Other animals, such as the oyster and mullet, spend most of their lives in wetland areas.

Nutrient-Rich Wetlands Feed Plants and Animals

Wetlands provide rich sources of nutrients for both plant and animal

Wetlands provide an ideal breeding ground for many aquatic animals.

growth. They may be so rich in organic material that their waters may be murky. **Detritus**, or decaying plant and animal material, is the first link in the wetland food chain. Bacteria and wave action help to break down organic materials into usable forms for zooplankton and many juvenile, or young, organisms. Many of these particles are trapped in the wetlands, providing food, cover, and protection for many animals.


The abundance of food and shelter in wetlands provide a perfect nearshore habitat for many organisms throughout their adult life. Animals such as the blue crab, shrimp, and some fish feed on juvenile organisms and only leave wetlands to release their eggs into the open ocean. After hatching, their young drift in the ocean currents before returning to the wetlands to mature and live out their adult life.

Estuaries: Where Saltwater and Freshwater Meet

One type of wetland is an **estuary**—an area where freshwater from the land and saltwater from the sea flow together. Estuaries are generally located where a river empties into the ocean or where freshwater from land drains into the ocean. The resulting water is brackish, or salty to some degree. Because saltwater is denser than freshwater, the deeper depths in an estuary's water column will be saltier; whereas the shallow depths will be less salty. Salinity of the water increases near the open sea and decreases closer to land.

The water level and salinity of estuaries change according to the tides and seasons. At high tide, saltwater flows farther up into the estuary than it does at low tide. At low tides, many areas are exposed to heat and air. An estuary's salinity will be highest during the summer when evaporation is the greatest. During winter and spring, increased storm runoff and decreased evaporation rates lower salinity.

zonation of an estuarine community

The mixing of freshwater and saltwater creates a unique environment for organisms. Many marine animals cannot tolerate the changing salinity in estuaries. Consequently, the number of species inhabiting estuaries is smaller than those living in nearby marine and freshwater habitats. Among the animals that have adapted to the extremes of estuaries are oysters. At high tide they open up their shells to take in water and filter through the rich supply of nutrients. At low tide they trap water inside their shells and close up to prevent the air from overheating them and drying them out. Other permanent residents in estuaries include blue crabs, worms, mussels, and barnacles.

Because the changeable conditions in an estuary keep out many would-be predators, organisms that can live there thrive. But even these organisms are restricted to certain zones according to the level of salinity they can withstand. This separation of marine life in a habitat into definite zones or bands is called *zonation*. Freshwater organisms are restricted to the upper end of the estuary, and saltwater organisms are usually found only near the ocean. The snapper, for example, only moves in and out with the tides, and only along areas of constant salinity, to feed or reproduce. Some organisms, however, have adapted and regulate their salt content and move freely about the entire estuary. The mussel and the marsh periwinkle, a type of snail, are well suited to survive this constantly

Zone	Dominant Organisms	Environmental Characteristics	
low marsh zone (inundated for many hours each day)	<i>Spartina alterniflora</i> cord grass ribbed mussel annelid worms marsh periwinkle	slowly traps sediments, increasing the height of the marsh anaerobic mud (mud without oxygen)	
high marsh zone (flooded a few hours each day)	Spartina patens salt marsh hay salt-resistant herbaceous plants and succulents pickle weed seaside lavender seablight seaside golden rod fiddler crabs	accumulation of detritus gradual formation of thin layer of top soil continued increase of elevation	
salt barren zone (flooded only at extreme high tide, usually once each month)	stunted forms Spartina patens reed grass pickle weed mounds of partially decayed plant or animal material remaining from last high tide mice and rats amphipods insects	decay of stranded vegetation begins the process of humus (partially decomposed organic material) formation elevation continues to increase	
transition zone (above the level of the highest tide)	bayberry <i>Myrica pensylvanica</i> groundsel tree poison ivy wildflowers sweet everlasting soapwort British soldier lichens (resistant to salt spray) permanent populations of small mammals	humus forms fresh water accumulates in the soil temperature of soil increases from direct rays of sun reaching the surface	

The Zonation of Marsh Life

seagrass beds

changing environment. These organisms spend their entire life in this habitat.

Seagrass beds are common in sublittoral estuarine environments. They provide food and protection for many smaller animals. Common seagrasses in Florida include widgeon grass, shoal grass, turtle grass, and manatee grass.

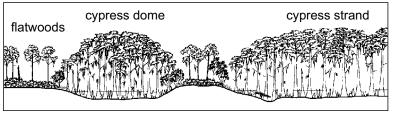
Estuaries are small in area compared to the oceans of the world, but they produce much life. The rivers that flow into them carry minerals and nutrients from the land. The waves and tides help to mix these waters, ensuring a rich food supply. Because so many juvenile organisms depend on this environment for their survival, estuaries are often called the *nurseries of the sea*.

Salt Marshes: Part of the Ocean Nursery

Salt marshes are low, flat coastal wetlands bordering estuaries and wellprotected bays in **temperate** areas. Salt marshes develop in littoral zones: When the tide is high, the water completely covers the flat land; during low tide, the muddy land is exposed to air. Any organism or species living in these *littoral zones*, also called the *intertidal zones*, must be able to adapt to the extremes created by tides.

Salt marshes are dominated by salt-tolerant grasses such as *Spartina* and *Juncus*. These grasses survive being partially covered with saltwater by excreting excess salt through special pores. The roots of these grasses trap particles of dirt and detritus thus preventing erosion and building up salt marshes.

Many animals use salt marshes as resting places during migration. Ducks, geese, and shorebirds are very common in marshes, feeding on the wide variety of organisms present. Other animals such as raccoons and turtles enter the marsh at low tide to feed. Common permanent residents of the salt marsh include the periwinkle snail, the fiddler crab, and the killifish. These animals adapt to the changing conditions by shifting their positions with the flow of the tides. The periwinkle snail crawls up and down the grass to stay above the water line. Armies of fiddler crabs emerge at low tide to feed on the nutrient-rich detritus. At high tide, the crabs quickly retreat into their burrows.


Mudflats: Provide an Environment for Bacteria

Mudflats are environments that have slightly sloping beaches and are characterized by dark, muddy sand. The mudflat area is unvegetated. It lacks seagrasses and marsh grass. Mudflats have very little wave action. The lack of wave action causes sediments to contain little or no oxygen. However, the lack of wave action does allow organic debris, such as *detritus* (decaying plants and animals), to accumulate on the mudflats. Mudflats are jokingly referred to as the "graveyards" of the wetlands because wastes decompose in the mud. Bacteria live in the mud and decompose wastes from marine organisms.

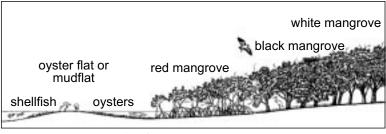
Mudflats usually have a characteristic odor similar to rotting eggs. This smell is a result of the production of a gas called *hydrogen sulfide* from decay. Hydrogen sulfide accumulates in the oxygen-deficient mud. Too many people consider the mudflats an environment devoid of life and importance, but marine scientists have found that mudflats are very important in the structure of the food web. Mudflats provide an environment for bacteria, which play an important role in converting wastes into useful nutrients. Nutrients produced in mudflats are transported by tidal flow to other parts of the estuary and to the open ocean. These nutrients are a major food source for oceanic plankton. Mudflats also provide homes and shelter for mud snails, clams, and worms.

Swamps: Marked by Their Trees

Swamps usually develop further inland from the ocean than do estuaries and salt marshes. Because of their location, swamps are not influenced much by tides. Like all wetlands, however, swamps are cleansing areas for the water that flows through them. The ground of a swamp is covered with detritus-rich mud filled with bacteria that help to break down water pollutants. One by-product of the bacterial action is the gas hydrogen sulfide, which smells like rotten eggs (see *mudflats*, above). This gas production can sometimes be seen as bubbles rise from the mud.

freshwater swamp

The most visible feature of a swamp is its trees. In Florida, the most common tree in a swamp is the


cypress. The cypress tree has large roots or *knees* that stick up out of the water. Tannic acid given off by cypress tree bark makes the water in a swamp slightly acidic. This acid makes the water appear dark. It also leaves rings or stains, showing the water level on trees or other objects in the swamp. Some swamps have scattered mounds of land. These wooded areas or swamp islands are known as **hammocks**. Common organisms found in a swamp include alligators, bass, trout, frogs, birds, and numerous insects.

Mangrove Swamps: Habitats for a Unique Tree

Mangrove swamps are wetlands that cover a large part of the coast in tropical and semi-tropical areas. In Florida, mangrove trees are found in southern Florida and the Keys. The **mangrove** tree is particularly adapted to tolerate the salty mud that covers coastal areas. Like *Spartina* and *Juncus* grasses, the mangrove can excrete excess salt to regulate its biochemistry.

Many small animals find shelter and protection in the mangrove roots. Muddy detritus, which is produced from tides bringing in organic debris and dead leaves from the mangrove trees, provides the basis for most of the mangrove food chains. Like the mudflats, the products of decay from the mangroves enrich the mangrove environment with nutrients. These nutrients are carried out to sea by the tides and are consumed by plankton in the open ocean. Mangrove swamps provide shelter for organisms that live in the water as well as for organisms that are land and air dwellers. Raccoons, osprey, and brown pelicans are just a few of the animals that make their home among the leaves and branches of the mangroves.

Mangroves also protect the shore from erosion. Mangrove tree roots hold sand in place. The entire mangrove community protects the shoreline from storms by absorbing rising storm waters and the impact of the storm

Florida mangrove swamp

waves.

There are four types of mangrove trees: the red mangrove, the black mangrove, the white

mangrove, and the buttonwood. Red mangrove trees are most noticeable for their many *prop roots*. Prop roots are above-ground roots that give extra support to the red mangroves. The roots grow from the trunk and

branches and arch above the water before submerging. Many small animals find shelter and protection in these roots. Muddy detritus, which is produced from falling leaves, provides the basis for most of the mangrove food chains. Crabs, oysters, clams, worms, and sponges take refuge on and in the roots of mangroves.

Everglades: Grassy Water

The Florida Everglades provide habitat and food for many birds.

The Florida **Everglades** is a very large wetland area in southern Florida. It is a mixed wetland dominated by grasses. Native Americans knew the Everglades as Pa-Hay-Okee, or *Grassy Water*. Spanish explorers called it *El Laguno del Espiritu Sanctu*, or Lake of the Holy Spirit.

The main source of water in the Everglades is rainwater and overflow from Lake Okeechobee and nearby rivers. In the past, this overflow moved through the Everglades as a huge river of water that began north of Lake Okeechobee. Since the early 1900s, however, the area draining through the Everglades has been ditched and cultivated, and many south Florida rivers have

been deepened and straightened. Despite the drastic changes affecting the Everglades, this huge wetland still provides habitat and food for both marine and land animals. This unique habitat has been changed due to pollution and the diverting of

the water flow.

Destruction of Wetlands

In spite of the benefits wetlands provide, we have continued to destroy them. Wetland areas in the United States have been reduced by over 40 percent since the 1950s. After being **dredged**, they are filled in for commercial development. Hotels, golf courses, and mobile home lots sit where wetlands once existed. The clearing and development of wetlands has greatly decreased the area available to aquatic and marine animals. This shrinkage has also decreased the

wetlands' ability to filter and clean stormwater runoff before it reaches our lakes, rivers, and oceans. The destruction of wetlands is disturbing the balance of life both in the sea and on land.

Millions of acres of the Florida Everglades have already been destroyed, and the water flow that fed this wetland has been completely changed. The space available for plants and animals that depend on wetlands is constantly being decreased. Almost two-thirds of the total fish catch in the United States is dependent on the survival of healthy wetlands. Yet the water necessary to replenish the wetlands is increasingly being used for agricultural and human uses, causing wetland areas to dry up. Wetlands also serve as natural buffers against storms. As we build on and destroy these buffer zones, we leave ourselves more vulnerable to the destructive forces in nature.

Coral Reefs: The Exotic Community

Coral reefs are named for the main organism that creates them. Reefs are made of *corals*—tiny sea animals that have a hard skeleton made of calcium carbonate. Certain types of algae that also produce calcium carbonate contribute to the formation of coral reefs. Corals build layer upon layer up toward the ocean's surface. Algae help cement the coral shells, other types of shells, and sand together to help produce the reef formation. The base of the reef is formed from the skeletons of *dead* coral; only the top of the reef is *living* coral and algae.

Coral reefs provide habitats for many of the more unusual and colorful marine animals.

Coral and algae have a two-way, or symbiotic, relationship called *mutualism*—each depends on the other to survive (see Unit 9). Microscopic algae called *zooxanthellae* are captured by the *coral polyps*, which are the basic structure of a coral animal. The algae then grow within the coral animal. The algae benefit by living safely within the coral polyp's cells and use the waste products of the coral. In return, the algae supply oxygen and nutrients for the coral animals. Corals are *sessile* filter feeders. Therefore, in addition to the algae, corals must depend on water currents to bring them

food and help remove wastes because they are attached to a surface and cannot move around (see Unit 10).

Reef-building corals require warm, tropical waters where the temperature does not drop below 20°C (68°F). The water also must be clear and shallow—less than 100 feet deep because some species of coral have algae that live in their tissues, and need lots of sunlight so the algae can produce their food. Therefore, reefs are most common in the Pacific, but a few are found in Florida. One of the most well known in our state is in John Pennecamp Coral Reef State Park in the Florida Keys.

Coral reefs provide habitats for many of the more unusual and colorful marine animals. Can you guess why? Coral reefs are composed of many types of coral growing together. The different coral types have varying shapes, sizes, and patterns which provide holes and crevices for marine

lionfish

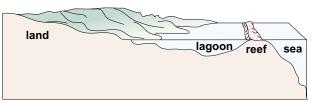
clownfish

organisms to seek shelter. Corals are classified into two types, hard corals and soft or flexible corals. Examples of hard corals are brain coral and staghorn coral. Soft corals include the gently waving sea fans and the sea pens. Both the soft coral and hard coral provide environments for over 3,000 animal species. Among the colorful marine species are the parrot fish, lionfish, moray eel, sea urchin, cleaner fish, and more.

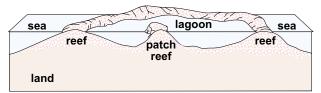
Coral reefs are productive but fragile environments. Pieces of coral can be broken easily by extreme wave action or from someone touching the coral. Coral is covered by a protective membrane. If the membrane is damaged, then the coral is at risk for infection or disease. Corals around the world are in danger from coastal development, decline in water quality, and too much fishing and diving.

Scientists distinguish among three different types of coral reefs: the **fringing reef**, the **barrier reef**, and the **atoll**.

Fringing Reef


Fringing reefs develop in shallow water along the edge of a volcanic island or land mass. These reefs create a fringe of living coral on the border of a land form. The coral on the side farthest from land has more oxygen and food than the land-side coral and so grows more rapidly. Fringe reefs are commonly found in the Hawaiian Islands in the South Pacific and parts of the Caribbean.

Barrier Reef


Unlike the fringing reef, the *barrier reef* is separated from the land by a body of water called a **lagoon**. The lagoon may be a few miles wide or very narrow.

The Great Barrier Reef of northern Australia in the Coral Sea is an example of this type. This reef stretches 1,250 miles along Australia's coast and varies in width from 12 to 100 miles. The Great Barrier Reef is the largest barrier reef in the world.

fringing reef - connected directly to shore

atoll - surrounded a central lagoon

island or land mass begins to sink, the coral continue to build new layers on top of the old layers. Eventually, the volcanic mountain is completely submerged beneath the water, leaving behind an atoll with a large lagoon in the center.

Atolls are common in the Pacific and Indian oceans and can exist in deep water. The largest atoll, named Kwajalein, surrounds a lagoon over 60 miles long. Kwajalein is in the Marshall Islands, southwest of Hawaii and east of Guam.

Atoll Reef

Atolls are ring-shaped reefs that develop from fringing reefs. As the volcanic

Coral Reef Formation

For a long time scientists did not understand how atolls could have been formed in deep water when they knew that living coral required shallow, sunlit waters. Charles Darwin, the famous biologist, studied atolls and developed a theory of reef formation in 1831. He suggested that volcanic islands provided the shallow-water base that coral needed to grow on. As the islands slowly sank or the sea level rose, the coral grew upward, creating lagoons between the coral and the land, forming a barrier reef. By maintaining growth upward, the coral remained in shallow waters, and the top portions of the coral

Reef-building corals require warm, tropical waters.

stayed alive. As the islands continued to sink or as sea level rose, eventually only the coral portion remained near the surface, forming an atoll surrounding a shallow lagoon.

Summary

Two coastal habitats important to maintaining the balance of life both in the sea and on land are *wetlands* and *coral reefs*. Wetlands contain bacteria that help to break down pollutants in water before they reach the sea. Wetlands also provide a nutrient-rich, protected breeding ground for many aquatic animals. Different types of wetlands include *estuaries*, *salt*

Seagrasses provide food and protection for many smaller animals.

marshes, swamps, mudflats, mangrove swamps, and the *Everglades*. Commercial development has destroyed many wetlands and endangered these essential buffer zones.

Coral reefs are made of layer upon layer of calcium carbonate. They develop only in sunlit, tropical waters and provide habitat for many of the oceans' more colorful and unusual animals. Different types of coral reefs include the *fringing reefs*, the *barrier reef*, and the *atoll*. Like wetlands, coral reefs are threatened by commercial interests.

Answer the following using short answers.

1. What is a *wetland*? ______

2. What are the three types of coral reefs? _____

3. What conditions must coral have to grow?

4. Why are estuaries called *nurseries of the sea*?

5. Where is the Everglades located? _____

6. Why are wetlands valuable to us? _____

7. What are ways that mankind is destroying wetlands? _____

Use pages 261-266 to correctly complete the chart below.

Classifying Near-shore Ecosystems					
Habitat	Common Plants	Water	Effect of Tides	Animals	
Estuaries					
Salt Marshes					
Swamps					
Mangrove Swamps					

Match each definition with the correct term. Write the letter on the line provided.

 1.	decaying plant and animal material	A.	coral reefs
 2.	large mixed wetland area in South Florida dominated by	B.	corals
	grasses	C.	detritus
 3.	fringing, barrier, and atoll	D	widgeon grass
 4.	combination of water and land	D.	
 5.	tiny sea animals with a limestone skeleton	E.	estuary
 6.	common Florida seagrass	F.	Everglades
 7.	an area where freshwater and saltwater meet	G.	mudflats
 8.	low, flat coastal wetlands bordering estuaries or bays	H.	salt marshes
 8. 9.		H. I.	salt marshes swamps

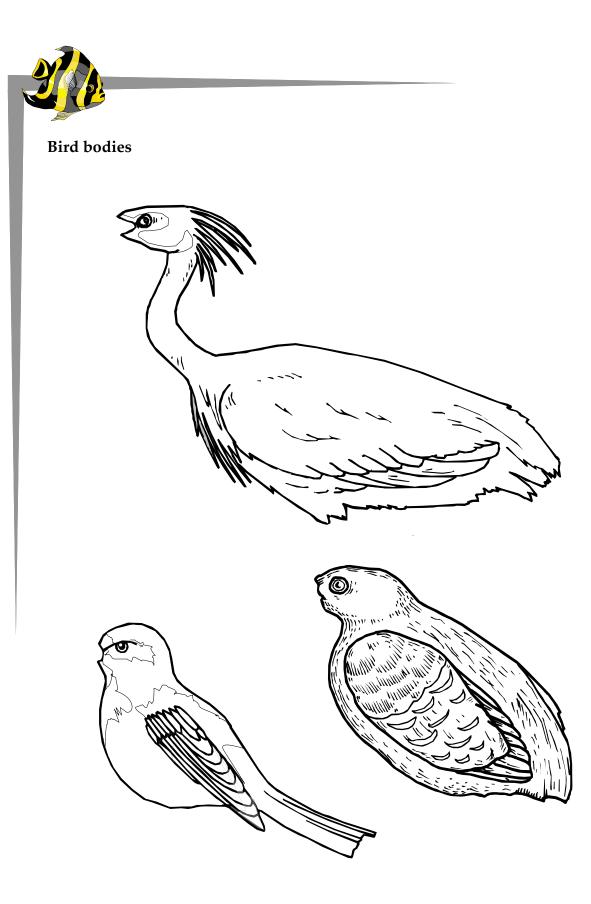
Lab Activity: Near-Shore Ecosystems

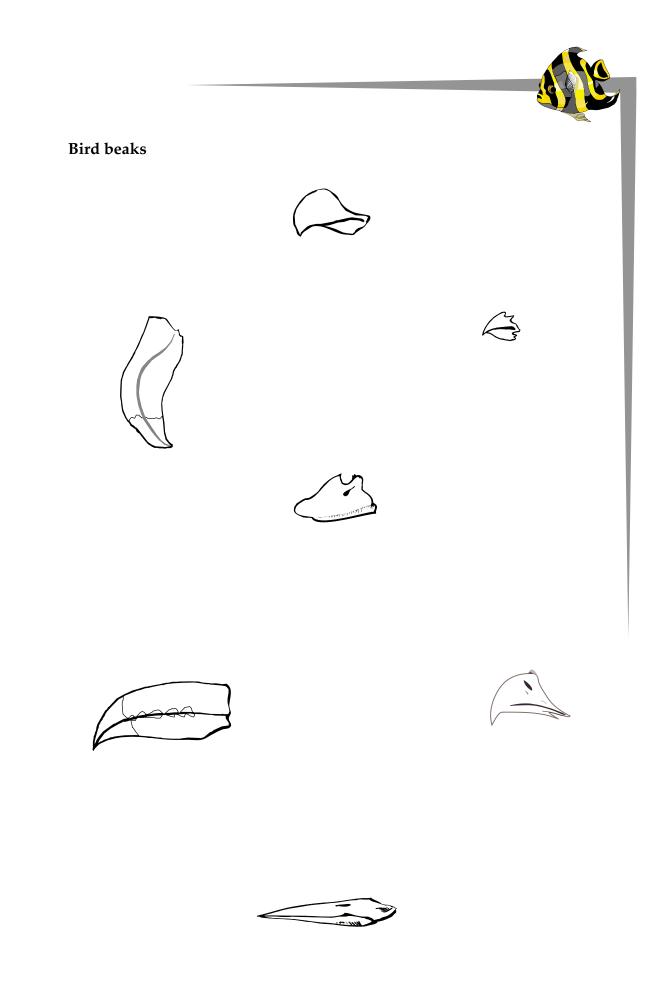
Investigate:

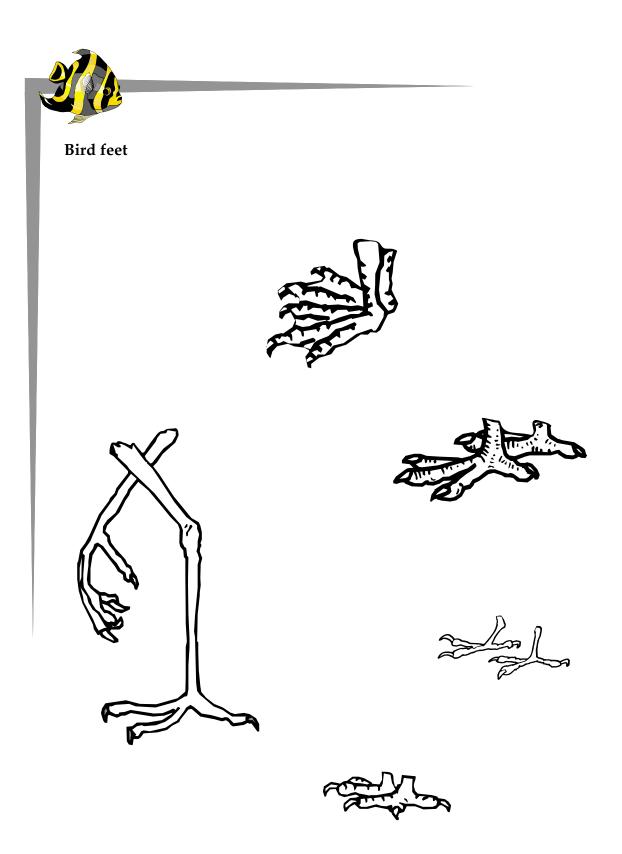
• Investigate some adaptations necessary for life in a salt marsh by building your own bird.

Materials:

- page of bird bodies
- scissors
- page of bird beaks
- glue or tape
- page of bird feet
- colored pencils


Procedure:


- 1. Use the information discussed in class or from your text about salt marsh habitats to design the perfect marsh bird.
- 2. Ask yourself the following questions about the marsh bird you wish to create.
 - What kind of food will my salt marsh bird eat?
 - What type of beak will the bird need?
 - Will the marsh bird need a short or long neck? Why?
 - How mobile is my marsh bird?
 - What type of feet will my bird need? Why?
- Decide upon the body, beak, and feet of your "perfect" marsh bird. Use a copy of pages 276-278 and cut out the selected body parts. Color each section appropriately. Glue or tape the parts together.
- 4. After creating your marsh bird, complete the **Analysis** section of the lab.



Analysis:

- 1. Describe the shape of the body of your marsh bird.
- 2. Describe the beak of the your marsh bird.
- 3. Why do you think a marsh bird would need the type of beak you selected for its environment?
- 4. Describe the structure of the feet you selected for your marsh bird.
- 5. Why do you think a marsh bird would need the type of feet you selected for its environment?
- 6. Explain how salt marsh organisms are adapted to their habitat.

Practice

Match each definition with the correct term. Write the letter on the line provided.

 1.	slightly sloping beach with dark, muddy sand, no marsh grasses, and very little wave action	A.	coral reef
 2.	describes moderate climate zone between the tropics and the poles	B.	detritus
 3.	low, coastal wetland covered by salt-tolerant grasses	C.	estuary
 4.	the mouth of a river or bay where freshwater and saltwater mix; the part of the river where its current meets the ocean's tide	D.	mudflat
 5.	decaying plant and animal material	E.	salt marsh
 6.	underwater community of living and dead corals; supports life in warm tropical waters	F.	temperate
 7.	an area that is a combination of water and land; may be exposed, partially submerged, or covered with water	G.	wetlands

Practice

Use the list below to write the correct term for each definition on the line provided.

atoll barrier reef dredge Everglades fringing reef		hammock lagoon mangrove swamp
	_ 1.	ring-shaped coral island usually located in deep water; developed from fringing reef formed around a volcanic island or landmass
 	2.	water separating land from a coral reef or sand bar
	_ 3.	coral formation that is separated from land by water (a <i>lagoon</i>)
 	4.	coral reef that grows around the edge of a volcanic island or landmass
 	_ 5.	to remove underwater land or sediments by suction or digging
 	6.	large, mixed wetland area located in southern Florida
 	7.	tree found in muddy tropical wetlands whose twisted roots grow partly above ground
 	8.	wooded area surrounded by marsh
 	_9.	wooded wetland located further inland than marshes

Unit 12: Plankton

Unit Focus

This unit describes the two predominant plankton types: phytoplankton (plant) and zooplankton (animal). Students will investigate the important role of plankton in the food chain and learn that some plankton are larval stages of larger marine organisms such as lobster, fish, and crab.

Student Goals

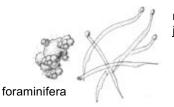
- 1. Define plankton.
- 2. Identify the two main types of plankton.
- 3. Discuss the importance of phytoplankton in the ocean environment.
- 4. Name and describe the two types of zooplankton.

Vocabulary

Study the vocabulary words and definitions below.

copepods	. small crustaceans that have two long antennae for movement and gathering food; most common zooplankton
diatom	. composed of two identical halves encased in a shell made of silica or "glass"; most common phytoplankton
dinoflagellates (dy-noh-FLAJ-eh-laytz)	. small plankton with characteristics of both plants and animals; causes red tide
flagella (FLA-gel-la)	. tiny whiplike hairs used for movement or catching food
foraminiferan (fo-RAM-i-nif-e-ran)	. a single-celled holoplankton with a calcium carbonate shell
holoplankton (hol-o-PLANK-ton)	. organisms that spend their entire lives as plankton
larva	form of an organism that is immature and very different looking from the adult organism; plural is <i>larvae</i>
megalops (meg-A-lops)	. planktonic larval stage of the crab; follows the zoeal stage
meroplankton (mer-o-PLANK-ton)	. organisms that spend only part of their lives as plankton
mesh	open spaces in a net or screen

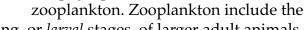
mysis	. planktonic shrimp larva
photic zone	. the lighted region of the ocean; area where photosynthesis can occur; phytoplankton live in this region
phytoplankton	. small, usually microscopic plant plankton that float or drift in the ocean
plankton	. small, usually microscopic plant or animal organisms that float or drift in the ocean
plankton net	. a cone-shaped net of fine mesh that is pulled through the water to collect plankton
pseudopod (SOO-duh-pod)	. footlike projection
radiolarian (ray-dee-oh-LAYR-ee-uhn)	. a single-celled holoplankton with a transparent body or shell
tentacles	. long, threadlike structures that hang from some organisms; may contain dangerous stinging cells
zoea (zo-E-a)	. young planktonic larval state of the crab
zooplankton	. small, usually microscopic animal plankton that float or drift in the ocean



Introduction: Plankton—Small but Vital

Plankton are either plants or animals that float or drift in the water. In fact, the word *plankton* comes from the Greek word meaning *to drift*. Plankton may live near the surface of the water or near the ocean floor. Plankton are primarily carried along by ocean waves, tides, and currents. In spite of their size and their appearance as simple organisms, they are essential in sustaining life as we know it both in the sea and on land.

There are two main types of plankton—plant and animal. **Phytoplankton** (*phyto* means *plant*) are the floating or drifting plant plankton. As plants, phytoplankton need light to produce their own food through the process of photosynthesis; they must, therefore, live in the **photic zone**, where light can penetrate.


Zooplankton (zoo means animal) are the animal plankton, and they are the

arrow worms

most abundant animals in the ocean. They do not need light and can live below the photic zone. Some zooplankton migrate up and down the water column to feed on phytoplankton or other

developing, or *larval* stages, of larger adult animals such as fish, crabs, and other small organisms. The **arva** is the form of an organism that is immature in

zooplankton

veliger or

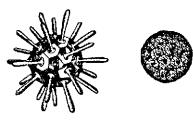

snail larva

larva is the form of an organism that is immature in development and can be very different looking from the adult organism.

Phytoplankton

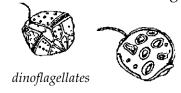
These small, usually microscopic sea plants are the dominant plant form in the ocean. Phytoplankton produce their own food through the process of *photosynthesis*. Phytoplankton are essential for life both in the ocean and on land. They are the primary food producers for all marine food chains. They also produce over 80 percent of the oxygen supply, which we need to survive.

The most common type of phytoplankton in cold waters is the **diatom**. These organisms are very small, but they exist in large numbers. Each diatom has a shell made of silica, a glassy compound, with two equal halves.



phytoplankton

Diatoms reproduce by splitting in two. Each new diatom gets half its shell from the parent and grows another half to form a new organism. This is how it got the name *diatom*, which means *two atoms*. Diatoms are particularly abundant in cold Arctic waters.


Another type of phytoplankton is the *coccolithophore*. These small plants have chalky shells made of calcium carbonate and can swim by moving tiny, whiplike hairs called a **flagella (FLA-gel-la)**. Coccolithophores are usually found in warmer waters. Even though they are too tiny to be seen individually, a dense

coccolithophores

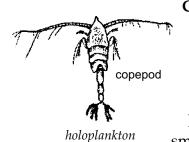
population in an area will give the water a milky appearance.

Dinoflagellates (dy-noh-FLAJ-eh-laytz), another member of the phytoplankton, are often the most common plant in tropical oceans. Like other phytoplankton, these plankton are able to produce their own food with the aid of

sunlight. Unlike most plants, they are able to move around with the aid of a flagellum. When there is not enough light to produce their own food, many dinoflagellates will eat other plankton. Many scientists classify dinoflagellates somewhere between plants and animals because they have characteristics of both.

In tropical or semi-tropical waters, dinoflagellate algae produce *red tide* by secreting toxins, or poisons, that can kill fish and other marine life. Such red tide *blooms* are common in the Tampa Bay area in Florida. Sea birds and even people are sometimes poisoned by eating shellfish or fish contaminated with these toxins.

Dinoflagellates, like fireflies, produce light without heat, a phenomenon called *bioluminescence*, the biological production of light. You can see this occurrence as twinkling lights in the water just above where waves break.


Zooplankton

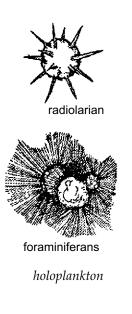
Zooplankton, or animal plankton, are usually larger than the phytoplankton and cannot make their own food. To survive, they consume phytoplankton or smaller zooplankton. Zooplankton are divided

into major groups: **holoplankton (hol-o-PLANK-ton)**, plankton that spend their entire lives as part of the plankton community. **Meroplankton** (**mer-o-PLANK-ton**), on the other hand, spend only part of their larval stages as plankton. They then *metamorphize* or change into their adult non-plankton stage.

Holoplankton: Permanent Members of the Plankton Community

Copepods, the most important and numerous members of the holoplankton, look like tiny shrimp. They have two long antennae which are used to help the copepod float and move around in the water. They also have six pairs of jointed legs and a tail. These antennae and bristly legs help the copepod trap its food—phytoplankton or small plant material. Copepods are the food source

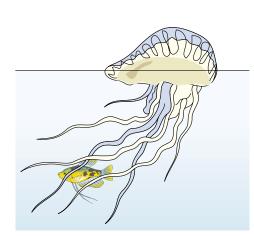
for many fish in the ocean. They help form the


food chains that feed larger animals and humans.

The arrow worm, another member of the holoplankton, has a transparent head, body, fins, and a tail. They are predators that use grasping spines or *fangs* to grab their prey. Arrow worms are very common in areas occupied by copepods.

arrow worms

holoplankton


Some holoplankton are single-celled. The most common of these are the microscopic **radiolarian** and **foraminiferan (fo-RAM-i-nif-e-ran)**. Radiolarians are transparent and have long spines that branch out from their body, like the spokes of a wheel. The branching spines of the radiolarian provide buoyancy and protection.

Foraminiferans are enclosed in a shell made up of calcium carbonate. Forams have holes in their shells that allow the organism's **pseudopods (SOO-duh-pods)**, or *footlike projections*, to flow out and catch food. When a foraminiferan dies, the shell of the animal falls to the ocean floor. Over a period of time, the shells accumulate on the ocean floor and form chalk deposits.

A larger type of permanent zooplankton is the umbrella jellyfish. Jellyfish are commonly found floating near the surface or washed up on the beach. A jellyfish has a jellylike body called the *umbrella*, with a mouth on the underside surrounded by **tentacles**. The tentacles tentacles contain stinging cells cannonball jellyfish mouth moon jellyfish that are used in defense and common jellyfish found in Florida waters feeding. Some jellyfish may be harmful to humans, whereas others are

harmless because we are not affected by the stinging cells. Above are two common jellyfish found in Florida waters.

Portuguese man-of-war

In tropical waters, you might see the Portuguese man-of-war. It is a large jellyfish-like colonial organism with a blue or pink float that resembles a floating plastic bag. Beneath the float are tentacles that may be up to 30 feet long. Portuguese men-of-war can be very toxic to humans—so it is best to stay clear of them.

The stings of the jellyfish and the Portuguese man-of-war can be very painful. The following chart shows the symptoms and treatment of a jellyfish or man-of-war sting.

Jellyfish and Portuguese Man-of-War Stings			
symptoms	treatments		
 burning or itching pain 	don't rub the affected area		
rashswelling	rinse the affected area thoroughly with hot water		
possible breathing difficulty	 clean the area with alcohol; then carefully apply a paste of meat tenderizer and water 		
 cramps nausea	avoid the sun or water and rest		
fainting or dizziness	get medical treatment if necessary		

Meroplankton: Temporary Member of the Plankton Community

Meroplankton spend only part of their lives as plankton. Many invertebrates and vertebrates spend the early or young larval stages as meroplankton. As they mature, they metamorphize or move out of the

planktonic stage. They spend their adult life either crawling on the seafloor, swimming, or permanently attached to

an object in the ocean. Often, their planktonic stage

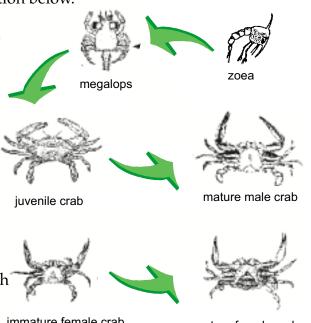
planula or coral larva

megalops or lobster larva

fish larva

form. Crabs, for example, are planktonic for a short time after they hatch. A crab's first

looks completely different from their adult


short time after they hatch. A crab's first larval stage is called the **zoea (zo-E-a)** stage. Its second larval stage is the **megalops (meg-A-lops)** stage, which is also planktonic but with some of the features of an adult crab. The megalops

meroplankton

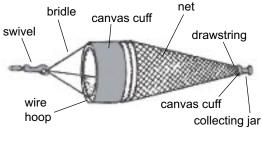
will then develop into the adult benthic crab and can no longer be classified as a plankton. See the illustration below.

Shrimp are also planktonic when they first hatch from eggs. The shrimp larva is called a **mysis** and closely resembles an adult shrimp.

Many other organisms also have meroplankton stages, including the oyster, barnacle, sea star (starfish), sea urchin, and many types of fish. During the meroplankton stages the young are distributed to new areas in the ocean by drifting with the tides and currents.

immature female crab

mature female crab


Life Stages of a Crab

Collecting Plankton

Because they are so numerous and have no defenses, plankton are easy to collect and observe. A **plankton net** is pulled through the water with the mouth or large end of the net leading. Water passes through the net's mouth and out the small **mesh** of the net as the plankton are trapped on the inside of the net.

plankton net

Summary

Plankton are organisms—both plant and animal—that float or drift in the ocean waves, tides, or currents. Plant plankton, or *phytoplankton*, live in the *photic* (lighted) *zone* for photosynthesis. As the primary food producers, they are essential to all marine food chains. Animal plankton, or *zooplankton*, can live in deeper parts of the ocean and migrate up and down the column to feed on phytoplankton and smaller zooplankton. Organisms, such as the copepods and jellyfish, that spend their entire lives as zooplankton are called *holoplankton*. Two of the larger zooplankton, the jellyfish and Portuguese man-of-war, have tentacles that can cause a painful sting. *Meroplankton*, such as the crab, shrimp, oyster, and sea star in their larval stages, are temporary members of the zooplankton, changing as they mature. Plankton are easy to collect in a plankton net for study in the lab.

Answer the following using short answer.

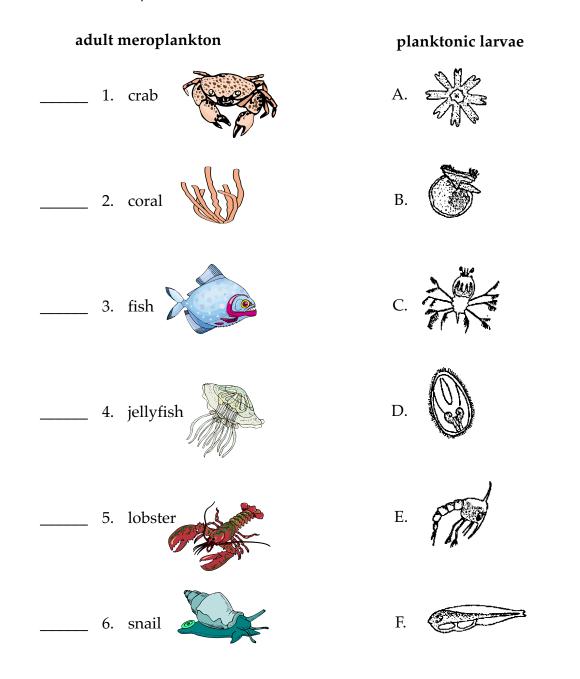
1. What does the term *plankton* mean? _____

2. What are the two main types of plankton? _____

3. Why must phytoplankton remain in the photic zone?

4. Why are phytoplankton important for sustaining life?_____

- 5. What are the shells of diatoms made of? _____
- 6. Why are dinoflagellates considered to be between plants and animals? ______



	-
7.	What is <i>red tide</i> ?
8.	What do zooplankton feed on?
9.	What are animals that spend their entire lives as plankton called?
10.	What are animals that spend only part of their lives as plankton (usually as larvae) called?
11.	What are two members of the holoplankton?
12.	What should you do if stung by a jellyfish or Portuguese man-of-war?
13.	What are two animals besides the crab that experience the meroplankton stages?
14.	What equipment is used to catch plankton?

Practice

Below are examples of **meroplankton**. Use examples provided in the unit to match each **adult meroplankton** with the correct **planktonic larvae**. Write the letter on the line provided.

Lab Activity 1: Plankton Net

Investigate:

• Perform virtual or "computer" plankton trawls to examine the differences in the number and variety of phytoplankton, copepods, and invertebrate larvae in the open bay in comparison to the number and variety in the grass beds.

Materials:

- EcoVentures CD-ROM
- Plankton Data Sheet
- computer with CD-ROM drive
- pencil or pen
- Plankton Identification Data Sheet

Procedure:

- 1. Your teacher will provide you with an EcoVentures CD or will have the activity installed on a computer desktop for you. **Click** on the Ecoventures logo.
- 2. You should be viewing a map of **R. U. Green State Park**. **Click** on the **marine site** located on the lower right corner of the computer screen.
- 3. On the marine site screen, **click** on the **EcoVentures** box of the site map.
- 4. You should be viewing the Marine Ecoventures map. **Click** on the **pontoon boat** icon located in Snapper Bay.
- 5. You are now viewing the **trawl screen**. **Click** on the **red arrow**.
- 6. You are now viewing two pontoon boats. Each boat is ready to trawl for plankton. **Click** on **either boat**. Please note that one boat will trawl in the **seagrass area**, and the other boat will trawl in the **open ocean area**. You will have to operate both boats, but for now, **select one**.

- 7. After the boat has completed the trawl, **click** on **plankton**. A short video clip of how plankton are collected will appear on the screen. Please view the video clip.
- 8. After the video clip, a microscope screen containing a slide of plankton will appear.
- 9. You are now ready to begin counting the variety of plankton you collected in your plankton net. Count the kinds and number of plankton for **five different locations** on the microscope slide.
- 10. Use the **Plankton Data Sheet** on page 297 to keep track of the plankton you identify and count.
- 11. Using the **Plankton Identification Data Sheet** on page 298, sketch one example of each plankton type in the two areas and summarize your observations.

Identifying and Counting Plankton Tips:

- 1. Click on the word **count** and **select** the **organism** you wish to count.
- 2. Using the **mouse**, move the circle to **five different locations** on the microscope slide. At each location, record the type and number of plankton. (**Hint: Click** on each plankton as you count it. This will ensure that you do not count it twice.)
- 3. If you are **not sure** of the type of plankton you are observing, use the **reference** selection located in the tool bar at the top of the computer screen.
- 4. Select Field Guides and Plankton Book.
- 5. Browse the list of plankton and click on the plankton names to view images for identification.

A	analysis:
1.	Which tow area contained the greatest number of plankton?
2.	Explain why the tow area in question 1 had the greatest number of plankton.
3.	Explain why you think certain plankton types were found in sma
	numbers in the open ocean than in the seagrass area.

Plankton Data Sheet

Tow Area: Seagrass

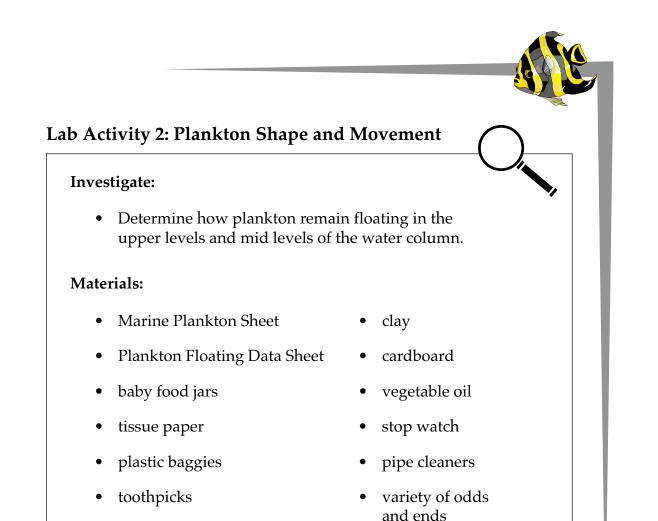
Organisms	Total
-----------	-------

Cope	oods	

Larvae _____

Phytoplankton

Tow Area: Open Bay


Organisms	Total
Copepods	
Larvae	
Phytoplankton	

Plankton Identification Data

Seagrass Area				
Plankton Type	Sketch	Summary		
copepods				
larvae				
phytoplankton				

Open Bay Area			
Plankton Type	Sketch	Summary	
copepods			
larvae			
phytoplankton			

Procedure:

- 1. Study pictures of plankton on the **Marine Plankton Sheet** on page 301. Discuss with your teacher and classmates how the shape of plankton and the surface area of plankton affect their ability to float.
- 2. Create your own plankton. Select the best material type from the assortment of odds and ends provided by your teacher.
- 3. After constructing your plankton, test its ability to float. Place your plankton in a sink full of water. (Wet your plankton model first to eliminate surface tension.) Time how long the plankton is able to float on top of the water. Once the plankton begins to sink, **stop** timing and retest the plankton's ability to float. Repeat the floating test three more times for a total of five trials. Record your times on the **Plankton Floating Data Sheet** on page 302.
- 4. Some plankton produce oil within their bodies. Create a new plankton (or keep the same design) but add about a teaspoon of oil to its body design.

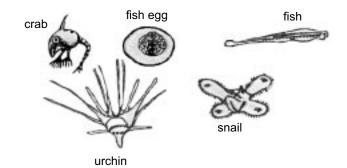
5. Test the *oil-producing* plankton's ability to float. Remember to wet the plankton first. Time how long the *oil-producing* plankton is able to float on top of the water. Once the plankton begins to sink, **stop** timing and retest the plankton's ability to float. Repeat the floating test three more times for a total of five trials. Record your times on the data sheet.

Analysis:

1. From observing classmates' plankton models and recorded times,

which design or shape of plankton floated the longest?_____

2. Do you think waves and currents affect plankton movement?_____


How?_____

- 3. Why do phytoplankton need to stay near the surface?
- 4. What type of design or shape would best be suited for

phytoplankton? _____

Marine Plankton Sheet Holoplankton—spend their lives as plankton zooplankton arrow worm copepod jelly fish phytoplankton dinoflagellate centric diatom pennate diatom

Meroplankton—spend only part of their lives as plankton

Plankton Floating Data Sheet

Regular Plankton

Trial	Floating Time
Oil-Producing Plankton	
Trial	Floating Time

Practice

Match each definition with the correct term. Write the letter on the line provided.

 1.	small, usually microscopic plant and animal organisms that float or drift in the ocean	A.	diatom
 2.	plant plankton	В.	dinoflagellates
 3.	the lighted region of the ocean; area where photosynthesis can occur	C.	flagella
 4.	animal plankton	D.	holoplankton
 5.	tiny whiplike hairs used for movement or catching food	E.	meroplankton
 6.	small plankton with characteristics of both plants and animals; causes red tide	F.	photic zone
 7.	organisms that spend their entire lives as plankton	G.	phytoplankton
 8.	organisms that spend only part of their lives as plankton	H.	plankton
 9.	composed of two identical halves encased in a shell made of silica or "glass"; most common phytoplankton	I.	zooplankton

Practice

Use the list below to write the correct term for each definition on the line provided.

copepods foraminiferan larva megalops			radiolarian tentacles zoea	
	1.	a single-cellec transparent be	l holoplankton with ody or shell	a
	2.	a single-cellec calcium carbo	l holoplankton with nate shell	a
	3.	0.	ke structures that ha ganisms; may conta nging cells	U
	4.	young plankt crab	onic larval state of t	he
	5.	antennae for 1	eans that have two le novement and gath mmon zooplankton	ering
	6.	planktonic lar follows the zc	val stage of the crab eal stage) ;
	7.	open spaces in	n a net or screen	
	8.		l net of fine mesh th h the water to collee	
	9.	planktonic sh	rimp larva	
	10.	footlike projec	ction	
	11.		ganism that is imma erent looking from t n	

Unit 13: Marine Plants

Unit Focus

This unit focuses on the variety and importance of marine plants. Students will study emergent and submergent marine plants, as well as investigate the single-celled phytoplankton and multicellular marine algae.

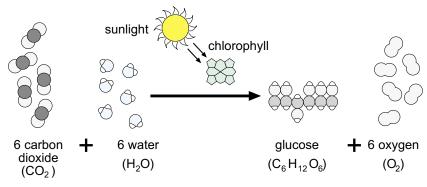
Student Goals

- 1. Describe the process of photosynthesis.
- 2. Differentiate between submergent and emergent marine plants.
- 3. State examples of submergent marine plants.
- 4. State examples of emergent marine plants.
- 5. Explain why seaweeds are classified as marine algae.
- 6. State products manufactured from marine algae.

Vocabulary

Study the vocabulary words and definitions below.

agar	gelatinlike substance covering some seaweeds; used as a medium to grow bacteria and in canning meats
algae	primitive plants without roots, stems, and leaves; usually found in aquatic environments (alga, <i>singular</i>)
algin	seaweed extract that helps in absorbing large quantities of water; used in ice cream, frostings, and paints
blade	leaflike area of a seaweed
carrageenan	seaweed extract used to keep substances suspended in solution; used in chocolate milk, toothpaste, and other products
chlorophyll	green pigment found in plants that helps in photosynthesis
Chlorophyta	group of green algae
emergent	rising up out of the water
holdfast	thickened, rootlike structure that attaches some seaweeds to the bottom
mariculture	farming of the sea or ocean (also called <i>aquaculture</i>)



Phaeophyta	. group of brown algae
protists	simple organisms whose cells are not specialized for different functions
Rhodophyta	. group of red algae
seaweeds	. the group of marine algae large enough to be harvested for use as food and in industrial products
stipe	stemlike part of a seaweed that holds its blades near the surface of the water
submergent	. growing while covered with water

Introduction: Marine Plants—The Producers

The ocean contains many plants and plantlike organisms. Some are similar to plants we see on land. Others are very different. But all of these plants and plantlike organisms have one thing in common. They are producers. Producers produce their own food through a process called *photosynthesis*. Through photosynthesis, producers capture sunlight with special pigments, such as **chlorophyll**. Producers combine light energy with water and carbon dioxide to form a sugar called *glucose*. Oxygen is a by-product of this reaction. Energy for the process is supplied by sunlight to create sugars that fuel the producers' life functions.

Through photosynthesis, carbon dioxide and water combine with sunlight, supplying the energy to form a sugar called glucose. Oxygen is a by-product of the reaction.

Most of the producers we are familiar with on land are classified as plants. Plants also grow in the ocean. Grasses are the most widespread example. However, most of the producers in the ocean, such as phytoplankton and seaweed, are very different from plants. Because of these differences, many biologists classify them with a totally different group of organisms—the **protists**.

Protists are organisms whose cells are very simple. A protist may have just one cell, as do the millions of tiny producers that float in the phytoplankton. Or protists may live together with thousands of other cells—all alike—to make a large, plantlike structure. This is the case with many species of green, brown, and red **seaweeds**. These seaweeds are also known as marine **algae**.

Plants: Complex Producers Rooted to Land

Plants differ from protists in that their cells are not all the same. The structure of a plant cell is usually customized, or specialized, for a particular job. This job depends on where the cell is located in the plant. For example, plant cells in leaves are specialized to carry out photosynthesis. Plant cells in stems are specialized to transport nutrients up and down the stem.

Plants that live in the ocean or along the shoreline are members of the most complex and specialized group of plants. This group is known as the *flowering plants*. Some flowering plants in the marine environment live totally beneath the water. They are **submergent**. Others are rooted in the ocean floor but rise up above the water level. They are **emergent**.

Coastal plants stabilize and prevent erosion. Many organisms depend on grass beds and beach plants for food and shelter. Because housing and recreational developments have destroyed many of these plants and their habitats, they have become endangered and are protected by state and federal laws. Treat plant life at the beach and in the ocean with care. Do not pick or pull plants growing on the beach or under water.

Submergent Plants: Plants That Live Underwater

Seagrasses are submergent plants that have adapted to life under water.

Seagrasses are submergent plants that have adapted to life under water. They help maintain water clarity by trapping sediments with their leaves and roots. Just as trees and plants on dry land help to hold soil and lessen erosion, seagrasses are important in stabilizing soft bottoms. They also provide food and shelter for many species of invertebrates, fish, and algae, which may grow on the leaves of seagrass. There are seven types of seagrasses found in Florida: manatee grass, shoal grass, turtle grass, paddle grass, star grass, widgeon grass, and Johnson's seagrass.

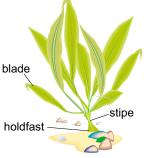
Emergent Plants: Plants That Are Salt-tolerant and Adaptable

Plants that grow near the shore or out of the water are classified as *emergent* plants. These plants are salt-tolerant and have specific adaptations to this harsh habitat. Many salt-tolerant plants have thick,

waxy coverings that prevent water loss. Others have a wooly coat of hair. Emergent plants, such as mangroves, help stabilize shoreline sediments and prevent erosion so that other plants can also grow in this habitat. *Pioneer plants* are the first to colonize, or start growing on, exposed land. They are the first step in stabilizing sediments. Grasses, vines, and sprawling shrubs are common pioneer plants. Examples include sea oats, railroad vine, and sand bur. As plants die, they are broken down into

nutrients and contribute to the *detritus*, or rich layers of decayed organic matter, that provides food for many organisms.

Grasses such as salt grass (*Distichlis*), needle rush (*Spartina*), and cord grass (*Juncus*) can be found growing in marshes and swamps. These plants adapt to saltwater by excreting salt from the edges of their leaves through pores. Other emergent plants include trees, such as several types of mangrove, all of which protect themselves from salt in different ways.

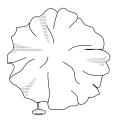

Plants that grow near the shore or out of the water are classified as emergent plants.

Marine Algae: Different and Colorful

Marine algae—green, brown, and red seaweeds, for example—often resemble the plants we see on land. Actually, as we discussed before, seaweeds are not plants but are simple-celled producers called *protists*. Some seaweeds float in the water like their smaller relatives, phytoplankton. Other seaweeds, like kelp, anchor themselves and grow quite large.

Although all seaweeds contain photosynthetic pigments, they are not all green. Other pigments such as carotene (orange) and xanthophyll (brown) mask the green color of chlorophyll, help in photosynthesis, and give seaweeds their color.

On our Florida beaches we often find colorful stringlike material draped over rocks and lining the beaches. This widespread marine algae is seaweed. Seaweed can be either attached or free floating. Seaweed attached to the ocean floor or stable objects have a thickened, rootlike extension called a **holdfast**, which helps the seaweed anchor itself in soft


The Structure of Marine Algae

mud or grip onto rocks, barnacles, or mussels. The holdfast, however, does not provide any nourishment for the algae and, unlike plants with roots, the algae will not die if the holdfast is broken off. Some seaweeds have a stemlike structure called a **stipe** that holds the blades near the water surface. The **blade** is the leaflike section of a seaweed. Floating seaweeds may have air sacs that keep the blades afloat at the water surface to get sunlight.

Types of Seaweeds: Green, Brown, or Red

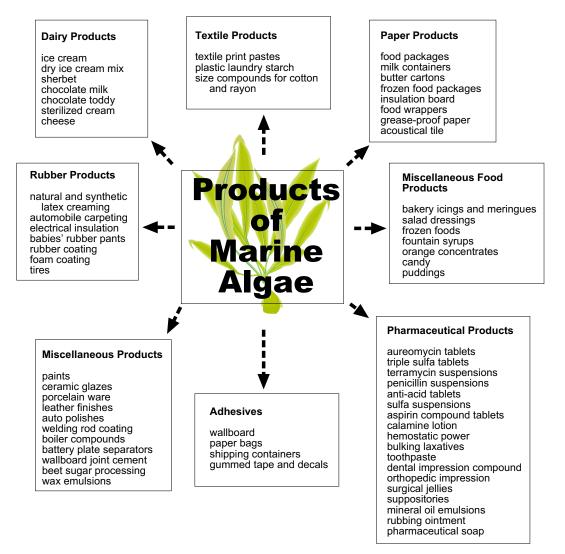
Scientists classify seaweeds partly on the basis of their color: green seaweeds, brown seaweeds, and red seaweeds.

The sea lettuce, Ulva, is the best known of the green seaweeds.

Chlorophyta, or the green seaweeds, are more common in fresh water than in the ocean. The sea lettuce, *Ulva*, is the best known of the green seaweeds. It resembles thin, flat, clear sheets of lettuce and is sometimes collected by humans for food.

The brown seaweeds, or **Phaeophyta**, are common along the coastal areas, especially in colder waters. The Phaeophyta are the largest of the seaweeds, some growing to over 100 feet long. Some common brown

seaweeds are kelps, *Macrocystis* and *Nereocystis*, and the floating seaweed *Sargassum*. *Sargassum* can be found washed up all over Florida beaches. It is leafy with small air sacs that help it float. This seaweed provides shelter and food for juvenile crabs, shrimp, and fish. Because brown seaweeds are so plentiful and easily harvested, some industries use them as a source of iodine, trace minerals, fats, and even vitamins.


Red seaweeds, or **Rhodophyta**, are almost entirely marine. Most red seaweeds grow attached to rocks or on the seabed where light barely penetrates. Many red seaweeds are reddish-purple or reddish-brown in color. Most of them are found growing on coral reefs or oyster beds. Red seaweeds are used to make soups and seasonings.

Seaweeds are usually found in zones or bands along the edge of the shore. Red seaweeds live at the deepest levels, whereas brown and green seaweeds survive closer to the surface. The depth at which different seaweeds live depends upon the amount of light they need to carry out photosynthesis.

Uses of Seaweeds: From Foods to Fertilizer

For centuries, people of the Far East have nurtured and harvested seaweeds in their **mariculture**, or farming of the sea or ocean. As early as the 17th century, people processed brown seaweed into soda ash for use by glass and pottery makers. Potash, a fertilizer, is derived from burned or dried seaweed. Iodine can also be derived from seaweeds. Today many types of seaweeds are prized as specialty foods because they are rich in minerals and vitamins.

Currently, brown seaweeds or kelps are harvested by the use of a *mower*. The mower cuts off the top four or five feet and pulls it up onto a barge. The kelp is then dried and used to produce **algin**, **agar**, and **carrageenan**. The kelp left in the sea grows back in several weeks to be harvested again.

Algin is a powdery extract that absorbs large quantities of water. Algin is added to ice cream to prevent ice crystals from forming. It keeps frostings and gels from sticking to packaging. Algin is also used to suspend antibiotics in solution and pigment in paints. *Agar*, the gel that is extracted from seaweeds by boiling, is used as a medium for growing bacteria in microbiological studies. The agar gel is nontoxic and is widely used in canning meat and fish and in the glue of postage stamps. Many products use another seaweed extract called *carrageenan*. Carrageenan helps to keep substances suspended in solution. It is commonly used in chocolate milk, toothpaste, and cosmetics. Most people have eaten or used seaweed and never known it.

Summary

The ocean contains many plants and plantlike organisms. These are producers that make their own food through the process of *photosynthesis*. The producers in the ocean are divided into two major groups: plants and *protists*. Plants are complex organisms whose cells are specialized for different jobs. Protists are simpler organisms. They may have one cell or many cells, but protist cells are all alike, with the same structure.

Marine plants may be either *emergent* or *submergent*. Emergent plants raise their stems and leaves out of the water. Submergent plants are totally covered with water. Plants do many important jobs. They stabilize shoreline sediments and help to prevent erosion. They also provide food and shelter to marine animals.

Marine protists include single-celled *phytoplankton* and multicelled marine *algae*. Marine algae is also known as *seaweed*. Seaweed often has plantlike parts and air sacs that help it float. By floating, seaweed can stay close to sunlight. There are green seaweeds, *Chlorophyta*, brown seaweeds,

Emergent plants raise their stems and leaves out of the water.

Phaeophyta, and red seaweeds, *Rhodophyta*. Seaweeds have been used both as food and fertilizer. Substances removed from seaweed are also used in many products, including glue and cosmetics.

Use the list above each section to complete the statements in that section.

blade	producers
brown	protists
holdfast	Rhodophyta
mariculture	submergent

- Plants and plantlike organisms are all ______
 they make their own food.
- 2. The red seaweeds, or ______, are used to make soups and seasonings.
- 3. The Phaeophyta, the largest seaweeds, are

_____ in color.

Seaweeds are grown through ______, or aquaculture, for food and industry.

- 5. The ______ is the leaflike part of an algae that is responsible for photosynthesis.
- 6. The rootlike part of seaweed that is used for attachment is the

 Seagrasses are examples of _____ plants that have adapted to life under water.

8. Marine algae such as seaweeds are ______ with very simple, unspecialized cells.

algin	kelp nhotosynthesis	salt-tolerant
chlorophyll erosion	photosynthesis pioneer	sargassum stipe
flowering	r	1

9. The green pigment _______ is found in plants and marine algae to help in photosynthesis.

10. The most complex group of ocean plants is known as

_____ plants.

11. The stemlike part of a seaweed where the blade attaches is the

_____•

- 12. ______, a powdery seaweed extract, is added to ice cream and frostings to absorb large amounts of water.
- 13. The process by which plants and algae produce their own food with the help of pigments is called _______.
- 14. The common brown seaweed that is found washed up on Florida beaches is ______.
- 15. ______, a brown seaweed, is dried and used to produce the extracts algin, agar, and carrageenan.
- 16. Emergent plants such as mangroves help prevent ______ on the beaches.
- 17. Emergent plants are ______, and many have adaptations to prevent water loss.
- 18. _____ plants such as sea oats are the first to colonize.

Lab Activity: Identify Products with Seaweed

Investigate:

• Identify products that have seaweed-based ingredients.

Materials:

• products such as canned food with labels indicating ingredients from the sea

Procedure:

Locate and collect packaged food or other products that have algin, agar, carrageenan, xanthan, gum, alginates, etc., listed as ingredients. (See chart on page 313 of the student book.)

Analysis:

1. What types of products contain agar? _____

- 2. What types of products contain algin?_____
- 3. What types of products contain carrageenan? _____

M

4.	Do you think that advertisers would be wise to promote seaweed as
	an ingredient in their products?
	Why or why not?
5.	What other names could these seaweed extracts be listed under?
6.	In what way are seaweeds important economically?
7.	Use the Internet and find three places where seaweeds are harvested and processed.

Use the list below to write the correct term for each definition on the line provided.

algae blade chlorophyll emergent holdfast		protists seaweeds stipe submergent
 	1.	stemlike part of a seaweed that holds its blades near the surface of the water
 	2.	leaflike area of a seaweed
 	3.	thickened, rootlike structure that attaches some seaweeds to the bottom
 	4.	rising up out of the water
 	5.	growing while covered with water
 	6.	primitive plants without roots, stems, and leaves; usually found in aquatic environments
 	7.	simple organisms whose cells are not specialized for different functions
 	8.	the group of marine algae large enough to be harvested for use as food and in industrial products
 	9.	green pigment found in plants that helps in photosynthesis

Match each definition with the correct term. Write the letter on the line provided.

 1.	gelatinlike substance covering some seaweeds; used as a medium to grow bacteria and in canning meats		agar algin
 2.	farming of the sea or ocean (also called <i>aquaculture</i>)	D.	argin
 3.	group of red algae	C.	carrageenan
 4.	group of brown algae	П	Chlorophyta
 5.	seaweed extract used to keep substances suspended in solution;	D.	emotophytu
	used in chocolate milk, toothpaste, and other products	E.	mariculture
 6.	seaweed extract that helps in absorbing large quantities of water; used in ice cream, frostings, and paints	F.	Phaeophyta
 7.	group of green algae	G.	Rhodophyta

Unit 14: Classifying Marine Animals

Unit Focus

This unit covers the hierarchy of marine organism classification. Students will discover that marine organisms are categorized according to their level of organization or complexity. Students will also preview each phylum, beginning with the most primitive (phylum Porifera) to the most advanced marine organisms, the marine mammals.

Student Goals

- 1. Define phylum.
- 2. Distinguish between invertebrates and vertebrates.
- 3. Identify marine organisms by their phylum characteristics.
- 4. Classify which organisms are primitive and which organisms are advanced.

Vocabulary

Study the vocabulary words and definitions below.

amphibians	cold-blooded vertebrates that spend part of their lives in water
annelids	segmented worms
arthropods	animals with jointed legs and hard exoskeletons
birds	warm-blooded vertebrates with feathers
chordates	animals with a nerve cord, gill slits, and notochord (rod that supports their body)
Cnidaria (NI-da-ri-a)	phylum of animals with stinging cells
crustaceans	group of marine arthropods with segmented bodies, paired limbs, and antennae
echinoderms (eh-KY-noh-derms)	animals with spiny skin and tube feet
endoskeleton	internal support structure or skeleton
exoskeleton	external support structure or skeleton
fish	cold-blooded aquatic vertebrates with scales and gills
gills	respiratory organ of some marine, freshwater, and land animals

hydrostatic skeleton	. a body cavity filled with water that is surrounded by muscles
invertebrates	. animals without backbones
mammals	. vertebrates that are warm blooded, have hair, provide milk for young, have lungs and breathe air
mollusks	. invertebrates with soft bodies and a muscular foot
phylum	. a major group of organisms (phyla, <i>plural</i>)
Porifera (PO-rif-er-a)	. phylum of sponges; simple animals with pores; means "pore bearing"
reptiles	. cold-blooded vertebrates that live on land and have dry, scaly skin
vertebrates	. group of chordates that have backbones
zoologist	. scientist who studies animals

Introduction: Classifying Marine Animals—Primitive to Complex

Zoologists classify animals into major groups. One of the largest classification groups is called a **phylum**. See the chart called *Phyla of Marine Organism* on the following page. Animals belonging to a specific

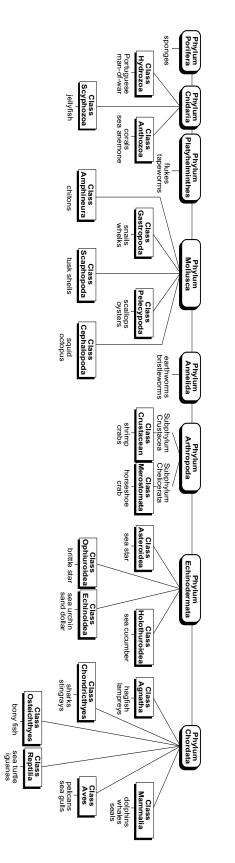
Chordates range from immobile animals to the giant blue whale, as well as to human beings.

phylum will share similar traits. For example, chordates, animals in the phylum *Chordata*, all have notochords (rods that support their bodies), nerve cords, and gill slits at some point in their lives. Chordates range from immobile animals to the giant and complex blue whale, as well as to us—human beings. This broad range of chordates illustrates that zoologists group animals according to some basic traits they share. It also shows that members of a phylum may look very different from one another.

The phylum Chordata includes **vertebrates**, a highly developed group of animals with backbones. Most animals, however, are in the other *phyla*. They do *not* have backbones and are classified as **invertebrates**. This unit will survey some of the invertebrates and vertebrates that are common in the marine environment.

Invertebrates: Well Adapted to Their Habitats

Invertebrates are often thought of as being more primitive—less complex—than vertebrates. Animals in some invertebrate phyla do have very simple body structures. But animals in other invertebrate phyla have nervous systems and skeletons as intricate as those of vertebrates.

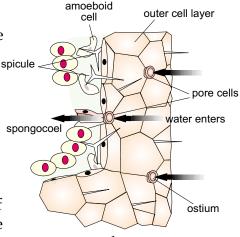

For example, marine invertebrates have a variety of different kinds of skeletons. The type of skeleton an animal has is specially suited to its environment. There are three types of skeletons: the **hydrostatic skeleton**, the **exoskeleton**, and the **endoskeleton**.

An animal with a *hydrostatic* skeleton is built like a bag made of muscles. When the muscles contract, or shorten, they push against the water inside the muscle bag, or cavity. This is very easy to see in a jellyfish, which has a

Jellyfish have a hydrostatic skeleton.

Phyla of Marine Organisms

hydrostatic skeleton. An *exoskeleton* is a hard coating that covers an animal's internal organs and muscles. Insects are examples of animals that have exoskeletons. An *endoskeleton* is a framework that is located inside the body of an animal. One of the simplest animals in the world has an endoskeleton—the sponge. One of the most complex animals in the world also has an endoskeleton—the human!


Porifera: Phylum of the Ancient and Primitive

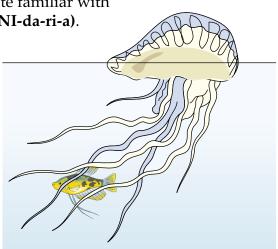
The phylum **Porifera (PO-rif-er-a)** contains the most primitive *multi*celled animals found on Earth. Sponges have been on our planet for at least 500 million years. They probably evolved from one-celled animals that lived together in colonies. The cells then became dependent on each other and lived together for mutual benefit. The sponge is a result of the close association of these cells. The sponges now found in the ocean have different cell types. Each type specializes in specific functions but relies on other types of cells for survival. A sponge can be ground up into individual cells that will reassociate to form a new animal.

Porifera means "pore bearer" and describes the sponge's structure. Its body is made up of two layers of cells that have pores or holes. Some cells have the task of drawing a current of water in through the pores and flushing it out through the top of the animal. As the water passes through the sponge, other cells filter out tiny particles of food, usually plankton. Other cell types then transport this food to all the cells in the sponge; and other groups of cells dispose of waste and reproduce. Inside their many pores, sponges sometimes provide shelter and habitat for numerous other organisms. The inside of a sponge may even serve as home for the entire life of some small or microscopic marine organisms.

Between the layers of cells in sponges are tiny support structures called *spicules*. These spicules interconnect to form an endoskeleton. When a sponge dies, it is this spicule skeleton that is left behind. Some sponges do not have spicules; instead they have a skeleton made of a protein called *spongin*.

Most of the over 10,000 different kinds of sponges live in the ocean; however, some are found in freshwater habitats. Most are

anatomy of a sponge



found in shallow waters and all are *sessile*: They are immobile and attach themselves to permanent objects such as rocks, shells, coral, piers, and even boats. Until recently, these marine animals were used as the common "sponge" to "sponge" up water in our kitchens and bathrooms. Most sponges used today are made of synthetic materials.

Cnidaria: Stingers in the Ocean

Most beach-goers in Florida are quite familiar with members of the phylum **Cnidaria (NI-da-ri-a)**.

Cnidaria means "stinging celled," and it aptly describes its members, which include the stinging jellyfish and Portuguese man-of-war. Most members of this phylum have tentacles armed with tiny, stinging cells that they use for gathering food and protecting their soft bodies. Some of these animals can cause severe stings and even death, whereas others are harmless to humans.

The Portuguese man-of-war is a member of the

Animals in this phylum have bag-like bodies made up of twocell layers. Their stomach cavity

or "gut" has only one opening—the mouth. The jellyfish and Portuguese man-of-war are part of the *plankton* (drifting or floating organisms); other members such as the coral, sea whip, and sea anemone are *benthic*. They attach themselves to the seafloor or other surfaces.

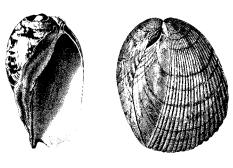
Phyla of Worms

Many different phyla of worms swim and inch through the ocean. Most of them are benthic—crawling or burrowing in the sediments of the seafloor. A few types of worms, however, actually swim or float. Some worms build tubes out of cemented sand grains or small shells. Others are *parasitic* and survive by living on the **gills** or bodies of other marine animals. Three noteworthy and numerous worm groups are the *flatworms* (in the phylum *Platyhelminthes*), the *roundworms* (in the phylum *Nematodes*), and the *segmented worms* (in the phylum *Annelida*).

Flatworms are flat, ribbonlike worms that have a solid body wall with no body cavity and one body opening. Many survive as parasites on vertebrates and are commonly found on the gills of the horseshoe crab. Other flatworms, however, are "free living" and must search for food.

The most numerous group of worms is the roundworms, or nematodes. They are found in almost every type of habitat. Most roundworms are

Many different phyla of worms swim and inch through the ocean.


small—less than one centimeter long. Their bodies are round and *unsegmented*, containing a body cavity and a tube-like digestive track. They have welldeveloped muscles, and many roundworms survive as parasites.

Segmented worms, or **annelids**, are the most advanced of the worms. Their round bodies are elongated and divided internally and externally into repeating

segments. They have a body cavity, circulatory system with blood vessels, a nerve cord, and an entrance and exit to their digestive system. Annelids can be fairly large. Some clamworms, for example, grow to over 18 inches long. Bloodworms and bristleworms are other common annelids found near shore.

Mollusks: Soft Bodies Protected by Shells

One of the largest groups of invertebrates is the phylum *Mollusca*. **Mollusks**, which means "soft bodied," are sometimes referred to as *shellfish*. Many mollusks have a special fold of skin called a *mantle*, which secretes some type of shell to protect their soft bodies. Another distinctive characteristic for all mollusks is the muscular "foot" they use to move

univalve

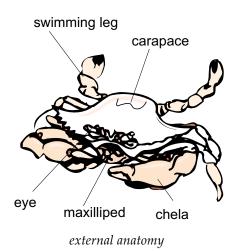
bivalve

from place to place. Mollusks include snails, nudibranchs, clams, oysters, mussels, octopus, and squid.

The shelled mollusks are divided into those with one shell (the *univalves*), such as the snail, and those with two shells (the *bivalves*), such as the clam and oyster. The

squid and octopus belong to a different group because they lack an external shell and have a well developed head. Most mollusks are valued as a food source, and their shells are sometimes used for jewelry.

Arthropods: From Lobsters to Spiders


Members of the phylum *Arthropoda* are called **arthropods** (meaning "jointfooted") and range from lobsters to spiders to ants and other insects. They are the most numerous in the animal kingdom and share some very distinct traits. In addition to having jointed feet or legs, they have segmented bodies and a hard outer shell called an *exoskeleton*. Periodically, arthropods shed their shells, a

Arthropods (meaning "joint-footed) range from lobsters to spiders to ants and other insects.

process called *molting*, and secrete a new shell to accommodate growth.

Most marine arthropods belong to a subgroup or class called **crustaceans**, which are found in all benthic environments. Barnacles, lobsters, shrimp,



and crabs belong to this family. Most crustaceans use gills to breathe and have two pairs of sensory appendages on their heads called *antennae*. They also have paired limbs, or appendages, that are adapted to their specific habitat. The lobster and crab, for example, have large pincers which they use to grab their food and to protect themselves. Shrimp have legs modified for walking, feeding, and swimming. Barnacles, sessile animals, use their modified legs for filtering food from the water.

The phylum Arthropoda contains the widest variety of organisms in the ocean, from planktonic forms such as the copepod to the ancient horseshoe crab.

Echinoderms

Echinoderms are spiny-skinned marine animals such as the sea star (starfish). Adult echinoderms have radial symmetry, or a circular design, with five body parts.

Members of the phylum *Echinodermata*—called **echinoderms** (**eh-KY-noh-derms**) —are spinyskinned marine animals quite familiar to beach-goers. You would know them as sea stars (starfish), sea urchins, sand dollars, brittle stars, and sea cucumbers. In addition to their spiny, bumpy external covering, adult echinoderms have *radial symmetry*, or a circular design, with five body parts. They also have an endoskeleton called a *test* made up of plates or bumps of calcium carbonate. Echinoderms move about by forcing

water along a system of tubes and canals in their bodies connected to tubed feet. By alternately contracting and expanding these tube feet, most echinoderms can slowly crawl across the ocean floor. Their tube feet also function in sensing their surroundings and in feeding.

Chordates

Chordates—animals in the phylum *Chordata*—all have these traits at some point in their development:

- (1) a notochord, a thin flexible rod to support their body;
- (2) a nerve cord running down their back; and
- (3) gill slits, which develop for respiration in **fish** and into pharyngeal arches, which aid in circulation, in **reptiles**, **birds**, and **mammals**.

These traits are *not* all apparent in all adult chordates. However, they do occur at some life stage in all chordates. For example, we do not see gill slits in humans because they are visible only in the embryo stage, before birth.

All of the *lower* chordates are marine animals. These include tunicates, which do not resemble animals at all. Tunicates are sessile-filter feeders that resemble a sponge or blob. Examples include sea porks and sea squirts.

The more advanced chordates belong to the subphyla *Vertebrata*. These animals with a backbone are commonly called *vertebrates* and are divided into five groups: fish, **amphibians**, reptiles, birds, and mammals.

Fish: Jawless, Cartilaginous, and Bony

Fish are *cold-blooded* animals that live in water and breathe through gills. Cold-blooded animals have a body temperature that changes with the temperature of their surroundings. There are three classes of fish: *the jawless fish* (lampreys), the *cartilaginous* fish (sharks and rays), and the *bony*

Familiar cartilaginous fish include sharks and stingrays.

stingrays.

and stingrays. livi Cartilaginous fish have flexible skeletons made of cartilage: a softer version of bone. They have fine, sharp, toothlike spines covering their bodies. Familiar cartilaginous fish include sharks and

Bony fish—all 30,000 species—include most other fish: the goldfish, mullet, flounder, and seahorse, to name just a few. Bony fish are distinguished by skeletons made of bone, and broad, flat scales covering their bodies.

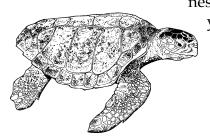
fish. Each class of fish has distinguishing characteristics. (See Unit 15.)

Lampreys are slimy, scaleless, jawless fish. They resemble a muscular tube with a mouth full of razor-sharp teeth and a strong tongue. A lamprey is parasitic and feeds on the body fluids of other living fish.

Bony fish—all 30,000 species include most other fish, including the goldfish.

Amphibians: Living in Water and on Land

After hatching from eggs, most *amphibians* live in water and breathe through gills. After developing into adults, they live most of their lives on land, although near water, and breathe through lungs. Nearly all amphibians return to water to reproduce. Among the most familiar



amphibians are frogs, toads, and salamanders. Most amphibians are not able to live in saltwater because their skin is too thin to protect them from the drying effect of salt.

Reptiles: Adapted to Life on Land

A group of cold-blooded, air-breathing vertebrates known as *reptiles* includes turtles, lizards, alligators, crocodiles, and snakes. Reptiles do not have to live in water because they have dry, scaly skin that protects against water loss. In addition, their eggs have a coating or shell that keeps them from drying out. Several types of reptiles, however, do live in water. Poisonous sea snakes are found in tropical waters; alligators and crocodiles are common in near-shore habitats such as swamps and marshes; and marine iguanas can be found on rocky shores, mangrove swamps, and beaches in the Galapagos Islands.

Many huge turtles also make the sea their home. Two species of sea turtles, the green and the loggerhead, grow to weigh over 400 pounds. The Atlantic Ridley and the hawksbill turtles are found in Florida waters and nest on our beaches. Female sea turtles crawl above the high-tide line on the beach to lay their eggs in nests under the sand. Then they leave their

Many huge turtles make the sea their home.

nests and return to the sea to feed. When the young turtles hatch, they must find their way to the sea on their own. Many are eaten by dogs or raccoons; some head towards lighted roads instead of the water, and only a very few survive to adulthood. Marine turtles are classified as *endangered*. It is illegal in the United States to kill or possess sea turtles or their eggs, harass nesting turtles, or disturb turtle nests.

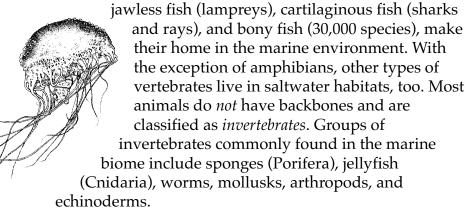
Birds: Low Weight and High Power


Birds are *warm-blooded* vertebrates with feathers. Warm-blooded animals have a body temperature that stays about the same temperature no matter what the temperature of the surroundings is. All birds also have wings, although some use them for purposes other than flying. Penguins, for example, use them to swim. Most birds have two traits that make them well adapted for flying. Birds have a lightweight skeleton of hollow bone that is easy to carry in flight. They also have a high metabolic rate that generates energy and power necessary for flight.

Sea birds are common in coastal habitats. Many birds rely on the ocean for food during long migrations. Common marine birds include the gulls, terns, skuas, albatross, and penguins.

Mammals: Earth's Largest Creatures

Mammals are another group of vertebrates. They have lungs, breathe air, provide milk for their young, and have hair. Mammals also maintain a regular body temperature, making them warm-blooded. The largest creature to have ever lived is a mammal—the blue whale—which may weigh in at over 150 tons and can measure 100 feet in length about the length of two and one-half school buses. Marine



Marine mammals include the whale, porpoise, seal, sea lion, sea otter, and manatee.

mammals include the whale, porpoise, seal, sea lion, sea otter, and manatee. A separate unit is devoted to marine mammals (see Unit 16).

Summary

Animals are classified in major groups called *phyla*. One phylum of animals—the chordates—has notochords, nerve cords, and gill slits at some point in their development. *Vertebrates*, a more developed subphylum of chordates, are animals with backbones such as fish, amphibians, reptiles, birds, and mammals. Three classes of fish, the

Use pages 323-333 to write the correct **animal phylum** *on the line provided.*

1.	sponge	
2.	jellyfish	
3.	crab	
4.	squid	
5.	shark	
6.	sea anemone	
7.	shrimp	
8.	bird	
9.	sea star	
10.	oyster	
11.	round segmented worm	

Use the list above each section to complete the statement in that section.

chordates	echinoderms	phyla
Cnidaria	invertebrates	zoologist
crustaceans	mammals	

1. A scientist who studies animals is called a

_____ ·

- 2. Scientists classify animals that share major traits into major groups called ______.
- 3. Animals that have a nerve cord at some time in their development are called ______.

4. Most animals do *not* have backbones and are classified as

_ •

5. _______ such as the whale and manatee have hair, nurse their young, and are warm-blooded.

- 6. Most marine arthropods belong to a subgroup called
- 7. The phylum of animals with stinging cells is called
- 8. _____ include sea star (starfish), sea urchins, and sand dollars.

amphibians	cartilaginous	jawless
birds	exoskeleton	reptiles
bony	hydrostatic	turtles

- 9. _______ are cold-blooded vertebrates with dry, scaly skin that lay eggs.
 10. The three classes of fish are the _______ fish , the ______ fish.
 11. Frogs and toads are classified as _______.
 12. The Atlantic Ridley and the hawksbill _______ are found in Florida waters.
 13. Common sea _______ include gulls, terns, and penguins.
 14. Arthropods have a hard outer shell called a _______.
 15. An animal with a _______.
- 15. An animal with a ______ skeleton is built like a bag of muscles.

Use pages 323-333 and other resources as needed to complete the chart below.

	Classifying Marine Animal						
Phyla	Examples	Symmetry	Skeleton	Segmentation	Features/Characteristics		
Porifera							
Cnidaria							
Annelida							
Mollusca							
Arthropoda							
Echinodermata							

Lab Activity 1: Phyla Identification

Investigate:

Compare different phyla of invertebrates. ٠

Materials:

- charts below
- preserved specimen or pictures of different invertebrates
- reference books (textbooks, encyclopedias, field guides, etc.) •

Procedure:

- 1. For each specimen, complete one of the charts below.
- 2. Draw a picture of your specimen in the space provided.
- 3. Use reference materials to identify the scientific name and phylum.

Analysis:	Lab Specimen
phylum:	specimen drawing
scientific name:	
common name:	
skeleton:	
body shape:	
segmentation:	
other characteristics:	

specimen drawing
Lab Specimen
Lab Specimen specimen drawing

Lab Activity 2: Crab Observation

Investigate:

• Observe the behaviors and adaptations of a living arthropod.

Materials:

- living blue crab (may substitute live crayfish, shrimp, or lobster)
- tray or small aquarium
- saltwater (fresh or prepared from mix)

Procedure:

Obtain a blue crab, and place it in a small tray or aquarium of saltwater to cover its gill cavity. **Be careful of the pincers.**

Analysis:

- 1. What phylum does the blue crab belong to?_____
- 2. Draw the shape of the exoskeleton, the body of the crab, and describe the color.

3. Carefully turn the crab over; diagram the shape of its abdomen, and describe the color.

4. How does this coloration help the crab? _____

5. Describe how the crab moves.

6. How many pairs of legs does the crab have attached to its

exoskeleton?_____

7. Are all legs the same? _____

Are any legs missing?_____

8. Draw an example of each type of leg in the space below and describe its function.

- 9. What does the crab use the pair of legs near its head for? (List two purposes.)
- 10. What does the crab use the next three pairs of legs for? _____
- 11. What does the crab use the last pair of legs for?_____
- 12. Gently touch the eye of the crab with a pencil eraser. Describe the crab's reaction.

13.	How does this behavior help the crab?				
14.	Give the crab a small piece of chicken or shrimp. Describe the crab's reaction.				
15.	How does the crab feed?				
16.	What appendage does the crab use to feed?				
17.	Do you think the crab is a predator or a scavenger?				
18.	Look at the shape of your crab's abdomen. If it is rounded like a "U" or a "V," then it is a female. If it is shaped like a "T," then it is a male. What is the sex of your crab?				
19.					
20.					

21.	Which sex is more numerous?
22.	Does size seem related to sex?
23.	Knowing that female crabs with eggs are not allowed to be taken by
	fishermen, would this explain your answer to question 21 and 22?
	How would your answer change?
24.	Based on your observations, describe two behaviors the crab has for
	protection
25.	Based on your observations, describe two physical adaptations the
	crab has for protection

Match each definition with the correct term. Write the letter on the line provided.

	1.	scientist who studies animals	А.	chordates
	2.	a major grouping of organisms	B.	Cnidaria
	3.	animals with a nerve cord, gill slits, and notochord	C.	endoskeleton
·	4.	group of chordates that have backbones	D.	exoskeleton
	5.	animals without backbones	E	hydrostatic skeleton
	6.	a body cavity filled with water that is surrounded by muscles		invertebrates
	7.	external support structure or skeleton	G.	phylum
	8.	internal support structure or skeleton	H.	Porifera
	9.	phylum of sponges; simple animals with pores; means "pore bearing"	I.	vertebrates
1	0.	phylum of animals with stinging cells	J.	zoologists

Use the list below to write the correct term for each definition on the line provided.

amphibians annelids arthropods birds		I
	1.	vertebrates that are warm blooded, have hair, provide milk for young, have lungs, and breathe air
	2.	warm-blooded vertebrates with feathers
	3.	cold-blooded vertebrates that live on land and have dry, scaly skin
	4.	cold-blooded vertebrates that spend part of their lives in water
	5.	cold-blooded aquatic vertebrates with scales and gills
	6.	animals with spiny skin and tube feet
	7.	group of marine arthropods with segmented bodies, paired limbs, and antennae
	8.	animals with jointed legs and hard exoskeletons
	9.	invertebrates with soft bodies and a muscular foot
	10.	segmented worms
	11.	respiratory organ of some marine, freshwater, and land animals

Unit 15: Fish—Cold-Blooded Swimmers

Unit Focus

This unit provides students with an overview of the distinguishing features of the three classes of fish: the Agnatha, the Chondrichthyes, and the Osteichthyes. Students will learn the differences between the three classes of fish and adaptations of fish to the oceans.

Student Goals

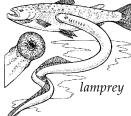
- 1. Name the three classes of fish.
- 2. State characteristics of cartilaginous fish.
- 3. State characteristics of bony fishes.
- 4. Describe some unusual adaptations in fish.

Vocabulary

Study the vocabulary words and definitions below.

Agnatha	. group of jawless fish with cartilage skeletons; includes lampreys and hagfish
ampullae of Lorenzini	nerve receptors in tiny pores in the shark's snout that can detect electric fields of other animals
buoyancy	. tendency to remain afloat in a liquid or gas
cartilage	. firm but flexible material that makes up the skeletons of sharks, rays, lampreys, and hagfish
cartilaginous	. class of fish with skeletons of cartilage; includes sharks and rays
caudal	. at or near the tail
countershading	. coloration in many fish where the dorsal side is dark and the ventral side of the fish is light
denticles	. small toothlike structures that cover the body of sharks and rays
disruptive coloration	. coloration in fish where the colored body pattern contains many lines which hide the fish's outline and helps camouflage the fish

dorsal	. located on the back
fusiform	. a streamlined body shape exhibited by many pelagic fish
gill slits	. visible opening for breathing found in cartilaginous fish only
lamprey	. a jawless parasitic fish with a tubelike body and large teeth
lateral line	. line of sensitive sound receptors along each side of a fish's body
operculum	. flap of tissue that covers the fish's gills
pectoral	. at or near the chest
-	. at or near the chest . thin, flat plates that make up the covering of bony fish
scales	. thin, flat plates that make up the
scales	. thin, flat plates that make up the covering of bony fish . large group of fish of the same type, size, and age that travel and feed
scales school	. thin, flat plates that make up the covering of bony fish . large group of fish of the same type, size, and age that travel and feed together . depositing or releasing a mass of eggs



Introduction: Fish—Cold-Blooded Swimmers

In earlier units you read about small and microscopic marine animals called *zooplankton*. These organisms, you'll remember, were carried by the oceans' currents. Fish, on the other hand, are nekton, or marine animals that swim independently of the ocean waters' force.

Fish can be defined as cold-blooded vertebrates that live in water, use fins to swim, and breathe through gills. There are three classes of fish. Two of these classes—the **Agnatha**, or jawless fish, and the **cartilaginous** *fish*—have skeletons of **cartilage**. The third class of fish—the *bony fish*—has a skeleton of bone. These three classes of fish differ in their body covering, the types of fins they possess, and their methods of maintaining **buoyancy**, or remaining afloat. As you can imagine, as life forms inhabiting water, fish need a mechanism to remain buoyant and free to move around in search of food and habitat.

Agnatha: The Jawless Lamprey and Hagfish

Agnathans existed as far back as 550 million years ago. And, when compared to other fish, there is something quite *ancient* about them. They do not have a lower jaw. Instead they have a sucker-like mouth with large teeth and a rasp-like tongue. The **lamprey** scrapes a hole in its prey and then sucks the body juices from

them. Hagfish also scrape a hole in the side of fish but then enter their prey and feed from the inside. Both fish have a flexible cartilage skeleton and small fins on an elongated snake-like body. They travel by attaching themselves to other more mobile fish. Many lampreys and hagfish make the Great Lakes their home.

Cartilaginous Fish: Sharks and Rays

Sharks and rays are examples of fish that have skeletons of cartilage rather than of bone. And, like all members of *Chondrichthyes*, a class of vertebrate fish made up of cartilaginous fish, they have small toothlike **scales** called **denticles** which cover their skin. All the points on the denticles face towards the tail. If you stroked a shark from head to tail, the skin would feel smooth. However, if you stroked the shark in the opposite direction from tail to head—the skin would feel rough. (Shark skin was once used as sandpaper!) Some cartilaginous fish bear live young; others lay eggs. Unlike bony fish that have an air-filled **swim bladder** to keep them afloat,

the shark and ray must keep swimming to avoid sinking. Many possess large oily livers to help maintain their buoyancy.

Sharks: Mostly Peaceful, Longtime Inhabitants of the Sea

Sharks have been swimming the seas for over 450 million years! During the last 300 million years they have changed very little. Most of us think of danger and sharp teeth chomping off body limbs when we think of sharks. But shark attacks are not as common as the media might lead us to believe. Fewer than 100 people a year are attacked by sharks, and very few of those attacks result in death. Consider that more people are hit by lightning in the United States than are attacked by sharks. Still, the media continues to mark them as a constant and overwhelming threat to beachgoers.

In fact, of the 350 known species of sharks, only 35 have shown themselves to be dangerous to humans. Of these, the hammerhead, mako, and tiger are among the best known. The most feared shark, however, is the great white shark, partly because of its representation as a creature of terror in the movie *Jaws*. The great white shark does deserve respect: It can grow to 25 feet in length and is one of the fastest swimming of all sharks. It tends to live in colder waters near large prey such as seals.

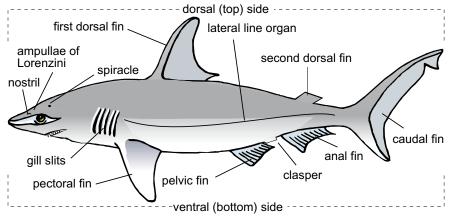
Many shark attacks on humans may be cases of mistaken identity. A swimmer on the surface of the water may look to a shark like a wounded marine animal. Other shark attacks may be the result of humans invading or disturbing sharks' territories.

Except for whales, the largest animals in the sea are the docile whale shark and the basking shark. These giant creatures are gentle plankton feeders that can grow to 40 feet and longer. Divers have been known to touch them and even on rare occasions to hitch a ride on them. Sharks range in size from these massive creatures to the six-inch cigar shark.

The Structure of Sharks: Fins and Gills

Most sharks share a basic body structure that is characterized by their fins, which they use to push or propel themselves through water. On the top side, or *dorsum*, sharks may have several fins. Looking from head to tail, we first see a **dorsal** fin. (It is this fin that moviemakers show above water

The whale


shark is a

plankton feeder.

to indicate dangerous sharks swimming about.) Next, on some sharks we see a second dorsal fin, smaller than the first and nearer the shark's tail. Their tail fin is called the **caudal** fin.

Sharks may also have fins on their **ventral**, or stomach, side. The large front fins on the side of sharks are the **pectoral** fins. The pectoral fins provide the lift which glides the shark through the water and also prevents the shark from sinking. Next are a pair of pelvic fins, located

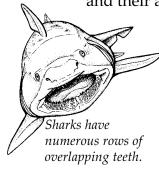
structure of a shark

under sharks and near their tail. On the edge of their pelvic fins, males have a long extension, called a *clasper*, which they use in mating. The last pair of fins—present in only some sharks—are the anal fins, located near the tail.

Sharks, like other fish, breathe through gills located on the sides of their body. The gills of bony fish are concealed or covered by a fleshy flap. Unlike bony fish, sharks and rays have visible or exposed **gill slits**. Because most sharks cannot force water over their gills to breathe, they must keep swimming or rely on currents to move water over the gills.

Cartilaginous fish, like sharks, also have a pair of breathing holes called *spiracles*. The spiracles are located on their dorsal side behind each eye.

Sharks: Built for the Hunt

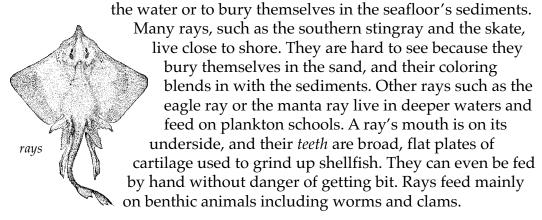

Sharks' bodies have many features that make them ideal for hunting and killing prey. Their many sense organs aid them in locating potential prey. Sharks *feel* vibrations in the surrounding water through special receptor cells located along both sides of their bodies. The receptor cells make up the **lateral line** organ. The lateral line organ picks up vibration (weak and

strong) as the energy from the vibration travels through the water. When the vibration hits the lateral line of the shark, the shark feels a change in pressure along its body. The feeling the shark experiences from the vibration is similar to when someone pokes you in the back and continues to poke you. This feeling is irritating to the shark so the shark goes to investigate the source of the vibration.

Sharks also have a pair of nostrils they use for detecting smells in the water. A shark's sense of smell is so sharp that a shark can detect a small amount of blood nearly a half a kilometer away. Marine biologists studying shark behavior have determined that the size of the shark's brain is responsible for its keen sense of smell. Nearly two-thirds of the shark's brain is utilized in detecting smells in the water. Other sensory cells that a shark uses to assist in locating prey are the **ampullae of Lorenzini**. These tiny cells are located in the snout of the shark. The ampullae of Lorenzini detect electric fields generated by the muscles of fish and other animals in the water. The presence of these cells explains the bizarre behavior of sharks attacking metal boat propellers and of consuming discarded metal cans and automobile license plates.

As sharks near their prey, they cover their eyes with a protective eyelid. Without vision, sharks then rely on their ability to detect the electrical fields produced by fish, other marine life, and objects. This lack of vision and their attraction to electrical fields may explain why sharks

have attacked metal objects or boat motors when closing in on their prey. Once sharks begin their attack, their jaws and teeth do not permit many prey to escape. Their jaws are hinged, allowing them to disjoint during feeding. This feature permits sharks to chew large animal parts and whole animals. Sharks have numerous rows of overlapping razor-sharp teeth that are quickly regrown when they are broken off or worn down.


This description of the ocean's ultimate hunter should encourage us to be prepared for sharks when we swim in the sea. So what should swimmers do if they see a shark while in the water?

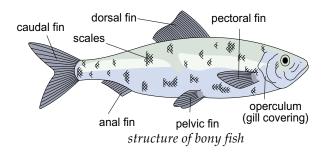
- Do not panic or try to drive the shark away by splashing or yelling.
- Remain calm and move slowly towards the surface or the shore.

Rays: Bottom Dwellers in the Ocean

Rays are close relatives of the shark: They also have skeletons of cartilage and denticles. Unlike sharks, however, rays have enlarged pectoral fins that resemble broad wings. Some rays may grow to 20 feet or more from one fin tip to the other. Rays flap these fins to propel themselves through

A few rays can be dangerous. The stingray has a sharp, poisonous barb near the bottom of its tail, which it can drive into its enemy. This barb may stick in the skin and cause an infection. To avoid being stung, drag your feet as you walk along the bottom—this action scares them away. If you are stung by a stingray, do not try and remove the spine yourself. Remain calm, apply a cold compress to the site, and seek medical attention quickly.

Bony Fish: The Ocean's Most Numerous Fish


Osteichthyes, the class of bony fish in the ocean, far outnumber sharks, rays, lampreys, and hagfish combined. They are found in every habitat of the ocean. And although they may swim long distances, they tend to remain and swim in a small range of depths. Fish are very well suited to their specific environments. For example, fish living near plants or narrow channels may be compressed from side to side so they can move safely around dangerous limbs or narrow passages. Fish that live on or near the sea bottom may be compressed from top to bottom, enabling them to rest on the marine floor. Most fish produce a large number of eggs during **spawning**, though only a small percentage survive to reach maturity.

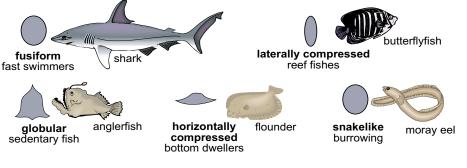
Structure and Features of the Bony Fish

Unlike land animals, the bony fish's skeleton does not have to support much weight. Instead, the body of bony fish is entirely suited for moving

through water and staying afloat. Attached to their skeleton of bone are muscles, which fish contract and expand to move their fins and propel themselves through water. Their fins can be folded back against their body or fully extended to help them move and steer through water. Their ability to swim smoothly and with little effort is enhanced by their streamlined shape.

Overlapping plates called *scales* cover and protect fish's bodies. Fish feel slimy to the touch because their scales are covered with a coating of mucus. This coating serves as a defensive barrier that keeps bacteria and diseases from entering the fish's body

through its scales. The coating also helps the fish move easily through the water. The slimy coating reduces the drag and friction, allowing the fish to glide through the water. You can determine the age of some fish by the number of rings on their scales. A single band on a scale may represent one year's growth.


Fish obtain oxygen from the water through their gills. The gills are covered by a flap of tissue called the **operculum**. If you have observed fish in an aquarium, you may have noticed the movement of the operculum as the fish breathed.

Fish are always on the move. Bony fish have an organ called a *swim bladder* that allows them to periodically float in the water. The swim bladder assists the fish in maintaining its buoyancy. *Buoyancy* is the ability to float or rise in a liquid medium such as water. The swim bladder is a gas filled organ (similar to a balloon) that fish use to rise, sink, or maintain their position in the water.

Although bony fish have the general structure and features described above, they come in all shapes and sizes. Open water, or *pelagic*, fish are much faster swimmers and cover a wider area than the bottom dwelling species such as the flounder. Pelagic fish have a body shape that is **fusiform**, or *streamlined*. A fusiform body shape produces little resistance to movement through the water. The fastest swimming speeds are reached when a fish uses its *caudal fin*. The shape and the height of the caudal fin affect speed. Tuna and sharks are examples of fish which are fast pelagic swimmers. These fish have a greater fin height than do slower fish.

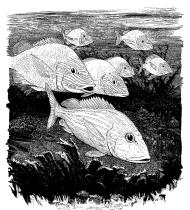
Fish that live in seagrass or on coral reefs have a *laterally compressed* body that helps them to swim more efficiently through the seagrass or coral heads. The butterflyfish and angelfish are fish that have laterally compressed bodies. Bottom dwelling fish, like the flounder, have a *horizontally compressed* or flattened body. These fish swim horizontally instead of vertically and are poor swimmers. The toadfish and anglerfish are also bottom dwelling fish but have *globular* or rounded bodies and pectoral fins that are enlarged to help support their body on the seafloor. These fish are commonly called "ambush hunters" because they wait patiently on the seafloor and ambush their prey. *Burrowing* fish and fish

fish shapes

that live in between rocks have long, snake-like bodies and usually have reduced (or lack) pelvic and pectoral fins. A moray eel is a fish that exhibits a snake-like body.

Fish use color for species recognition and concealment. Fish that live in the open ocean have body coloration known as **countershading**. In countershading, the fish's dorsal side (top) is dark and the ventral side (bottom) of the fish is light. How does this type of coloration help camouflage oceanic fish?

Coral reef fish exhibit a different coloration from oceanic fish. Reef fish have markings on their bodies that typically exhibit a banded pattern. The coloration pattern is called **disruptive coloration**. The banded patterns usually run vertically along the fish's body. This helps to break up the pattern of the fish's body. Predators have a harder time locating reef fish that display disruptive coloration.


Fish Schools: Survival in Numbers

About half of the species of fish live in **schools**. *Schools* describe large numbers of the same kinds of fish traveling and feeding together. Fish live in schools in freshwater streams and lakes, as well as oceans. Types of fish

that form schools can be as small as minnows or as large as tuna. The numbers of fish in a school range from about a dozen to thousands. Regardless of the size of the schools, they are made up of fish of nearly the same size and age.

Fish live in schools to increase their chances for survival. Fish in a school become quickly aware of an attack from a predator and, consequently, increase their chance that at least some will survive. In addition, swimming in schools may be easier for fish than swimming alone (as flying together is easier for birds than

Fish live in schools to increase their chances for survival.

flying alone). Fish release a slippery film that make them glide through the water more easily; swimming in a school permits fish to use the film released from surrounding fish. Fish also create little currents for each other, thereby reducing drag (similar to a *draft* created by a big truck on the highway). By properly spacing themselves, fish swim more efficiently. Gathering into schools also provides fish with suitable mates to help insure reproduction.

Summary

Fish are cold-blooded vertebrates that live in the water and breathe with gills. Two classes of fish—*Agnatha* (lampreys and hagfish) and *cartilaginous* (sharks and rays)—have backbones made of *cartilage*. The third class of fish—the bony fish—is the most numerous by far, and has a skeleton made of bone. Most fish have scales and fins and well developed body systems. Special *buoyancy* systems and *swim bladders* equip them for locomotion in the water.

Sharks are some of the largest marine animals, growing up to 40 feet in length. They are particularly well built for hunting and killing. Their sense organs are designed to detect potential prey, and their overlapping razorsharp teeth penetrate and kill prey easily. Although feared, sharks do not often kill humans. Rays are bottom dwellers that feed on benthic animals. Some rays are equipped with poisonous barbs.

Bony fish are well adapted to their specific environment. They may be shaped quite differently to swim easily and safely through their own particular surroundings. Many bony fish swim in *schools* for protection and reproduction benefits.

Practice

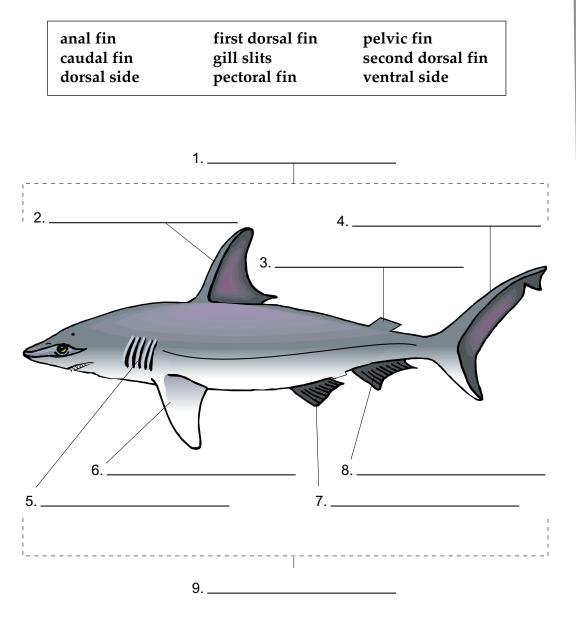
Use the list below to complete the following statements. **One or more terms will be used more than once.**

	age Agnatha bony bottom buoyancy	cartilage denticles great white shark hagfish schools	sense sharks size spawning swim bladders
1.	Two classes of fish h	nave skeletons of	and
	the third has a	ske	leton.
2.		is the ability to flo	at.
3.	The	, or jawless fis	sh, such as the lamprey
	and	travel by attac	ching themselves to
	other fish.		
4.		are the largest anim	mals in the sea besides
	the whale.		
5.	Sharks'	organs ma	ike them ideal for
	hunting prey.		
6.	Fish swim in	to in	crease their chances of
	survival.		
7.	The most feared sha	ark is the	·

- Sharks have toothlike scales called ______
 covering their bodies.
- 9. Rays dwell on the ______ of the ocean.

_ •

10. The most numerous class of fish is the ______ fish.


11. Most fish produce a large number of eggs during

- 12. Fish have ______ that allow them to maintain their position in the water column.
- 13. All fish in a school are about the same ______ and ______.

Practice

Use the list below to correctly label each **part of the shark** *on the diagram below. Write the correct term on the line provided.*

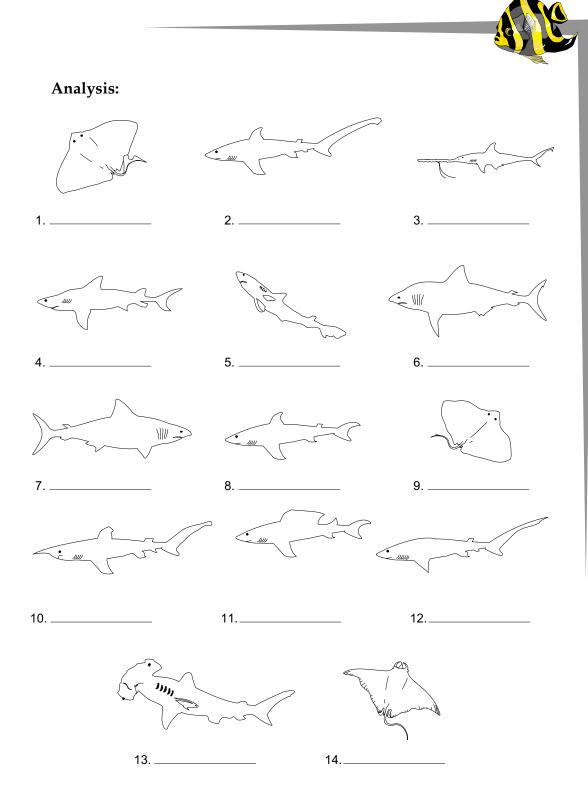
J.	
Pra	ctice
Ansa	wer the following using complete sentences.
1.	State the purpose of a fish's scales and the mucus coating.
2.	Describe how the lateral line organ of the shark detects vibration.
3.	What does the swim bladder of bony fish do?
4.	
5.	Describe what a fish will look like that has countershading as its body color.
6.	Where will a fish with countershading body color live?
7.	State examples of fish that exhibit the following body types:
	b. depressed or flattened:
	c. laterally compressed:
	d. snake-like bodies:

Lab Activity 1: Identify Species of Sharks and Rays

Investigate:

• Identify species of sharks, using a key.

Materials:


• shark pictures and key

Procedure:

- 1. Use the following statements to identify the sharks and rays pictured.
- 2. Begin at choice number 1 with each shark or ray. Decide whether the *first* or *second* sentence best describes the shark or ray. Use that choice to either identify the shark or ray and continue down the key.
- 3. Once the shark or ray is identified, write the name in the blank.
- 4. Then go to the next picture. Begin again at number 1. Each name is used only once.

ł	Shark Identification	
1.	body kitelike (viewed from top) body not kitelike	go to 12 go to 2
2.	pelvic fin absent and nose sawlike pelvic fin present	sawsharks go to 3
3.	seven gill slits present five gill slits present	sevengill sharks go to 4
4.	only one dorsal fin two dorsal fins	cat sharks go to 5
5.	mouth at front of snout not underside mouth on underside of head	whale sharks go to 6
6.	head expanded on side with eyes at end head not expanded	hammerhead sharks go to 7
7.	top of caudal fin same size and shape as lower top of caudal fin different from lower	mako sharks go to 8
8.	first dorsal fin very long, half of body first dorsal fin regular in length	false catsharks go to 9
9.	top of caudal fin very long, half of body top of caudal fin different from lower	thresher sharks go to 10
10.	long needle-like point on end of nose nose without long point	goblin sharks go to 11
11.	anal fin absent anal fin present	dogfish sharks requiem sharks
12.	small dorsal fin present near tip of tail no dorsal present near tip of tail	skates go to 13
13.	two horn-like appendages on front no horn-like appendages	manta rays stingrays

Lab Activity 2: Fish Printing Investigate: Observe the body form and fins of a fish. Materials: whole, intact, fresh fish from market water-soluble ink or paint water-soluble ink or paint mewsprint or other grainy paper small pieces of modeling clay or toothpicks

Procedure:

- 1. Cover work area with newspaper.
- 2. Rinse fish and pat dry to remove oils and slime.
- 3. Place fish on newspaper and spread fins and mouth. Use clay or toothpicks to hold in place (on underside only).
- 4. Use a small sponge to dab, not spread, paint on surface of fish. This is much like sponge painting. Do not slide sponge on surface. A little paint goes a long way.
- 5. Make sure area around fish is not covered with paint, and carefully place a piece of paper on top of your fish. Use your hands to press the paper all over the fish, covering all parts without sliding it or picking it up.
- 6. Gently peel the paper from the fish—you've created art!
- 7. Let dry; then label the fins, gill cover, and any other features you can see.
- 8. Write a paragraph describing the adaptations and habitat of the fish used.

Lab Activity 3: New Millennium Fish

Investigate:

• Review what you have learned regarding the anatomy of fish, the ocean environment, and the organism's methods of adapting to survive.

Materials:

- butcher paper
- notebook paper
- colored pencils or markers
- textbook or other marine resources

scoring rubric

Procedure:

- 1. Imagine it is the year 2055. Since the turn of the century, overfishing and global warming have dramatically altered characteristics of oceans. Make a list of 10 characteristics that would describe the Pacific Ocean in 2055. List these on a sheet of paper titled *New Millennium Ocean*.
- 2. Given the hypothetically evolved condition of the Pacific Ocean, *create* a fish of the *future*. Make a list of the different ways this *New Millennium Fish* would adapt to survive. Write this list on the same sheet of paper of the *New Millennium Ocean* characteristics. Title this list *New Millennium Fish*.
- 3. Draw and color a picture of the *New Millennium Fish* on a sheet of paper. Use the entire sheet of paper. Include labels for the fish anatomy or descriptors for any new or unusual adaptations the fish may have evolved. Be sure to use the correct coloration, appendages, fins, etc. Using the fish's adaptations, create a name for the *New Millennium Fish*.
- 4. After completing your New Millennium Fish drawing, display your drawing and list of characteristics on the wall. Enjoy viewing your classmates' fish creations.

Analysis:

Your drawing will be graded using the following rubric or scoring guide. Your teacher will tell you what points are possible to earn for each category. Write in the possible points in the first column, then use the second column to compare your scored rubric with your teacher's.

New Millennium Fish Rubric

	points possible	self- rating	points earned
1. The drawing has illustrated the correct and total number of adaptations listed.			
2. Color, labels, and other descriptors clarify what the model intended to show.			
3. Name is suitable and correlates to the characteristics listed.			
4. The drawing is neat and presentable.			
	t	total points	

Practice

Use the list below to write the correct term for each definition on the line provided.

Agnatha buoyancy cartilage cartilaginous	d d	audal enticles orsal amprey	pectoral scales ventral
	_ 1.	at or near the che	est
	2.	located on the sto	omach or belly
	3.	at or near the tail	
	4.	located on the ba	ck
	_ 5.	small toothlike st body of sharks ar	ructures that cover the nd rays
	6.	thin, flat plates th covering of bony	1
	_ 7.	a jawless parasiti body and large te	c fish with a tubelike eth
	_ 8.		naterial that makes up harks, rays, lampreys,
	9.	tendency to rema gas	in afloat in a liquid or
	_ 10.	class of fish with includes sharks a	skeletons of cartilage; nd rays
	_ 11.	group of jawless skeletons; include hagfish	fish with cartilage es lampreys and

Practice

Match each definition with the correct term. Write the letter on the line provided.

 1.	large group of fish of the same type, size, and age that travel and feed together	A.	ampullae of Lorenzini
 2.	coloration in fish where the colored body pattern contains many lines which hide the fish's outline and helps camouflage the	B.	countershading
	fish	C.	disruptive
 3.	coloration in many fish where the dorsal side is dark and the ventral side of the fish is light	D	coloration fusiform
 4.	a streamlined body shape exhibited by many pelagic fish		
 5.	flap of tissue that covers the fish's gills	E.	gill slits
 6.	depositing or releasing a mass of eggs and sperm directly into the water	F.	lateral line
 7.	shark's snout that can detect	G.	operculum
	electric fields of other animals	H.	school
 8.	line of sensitive sound receptors along each side of a fish's body		
 9.	visible opening for breathing found in cartilaginous fish only	I.	spawning
 10.	gas- or air-filled organ that regulates the buoyancy of bony fish	J.	swim bladder

Unit 16: Marine Mammals

Unit Focus

This unit provides students with an overview of the basic characteristics of cetaceans, pinnipeds, sirenians, and other marine mammals. Students will learn about the adaptations these mammals have acquired for life in the ocean and about the unique diving responses of marine mammals.

Student Goals

- 1. Classify marine mammals as cetaceans, pinnipeds, or sirenians and note other marine mammals.
- 2. Explain the importance of bradycardia for diving marine mammals.
- 3. Describe the feeding methods of cetaceans, pinnipeds, sirenians, and other marine mammals.
- 4. Describe the difference in feeding methods between toothed and baleen whales.

Vocabulary

Study the vocabulary words and definitions below.

baleen whales	whales without teeth but with rows of whalebone plates that act as a sieve for feeding <i>Example</i> : blue whale
blowhole	opening located on the top of the head of whales and dolphins, used for obtaining oxygen
blubber	. the fat of marine animals, which is used to keep the animal warm
echolocation	use of sounds to locate objects
endangered	. in danger of extinction due to natural or manmade factors
flippers	front limbs of dolphins, other whales, and seals; used for balancing and steering
fluke	. tail fin of whales, including dolphins
melon	fatty area on the forehead of whales, including dolphins, that controls the reception of pulses and echolocation
moratorium	. a legal ban; a legally authorized period of delay
toothed whales	. whales which have teeth <i>Examples</i> : sperm whale, dolphin

Introduction: Marine Mammals—Back to the Sea

All mammals share certain traits. They breathe air, nurse their young, have backbones, body hair, and are warm-blooded. Marine mammals, however, evolved from being land-based animals to living totally or partially in aquatic (water) environments. The legs of land-based mammals have been replaced by **flippers** in most marine mammals.

Marine mammals have developed streamlined bodies for swimming, and layers of body fat to provide insulation.

Marine mammals have developed streamlined bodies for swimming, spongy bones for buoyancy, and layers of body fat (**blubber**) to provide insulation against low temperatures. They have also developed adaptations to help them see, breathe, and navigate in aquatic environments. One important difference distinguishes marine mammals from fish and other fully-developed aquatic organisms: Marine mammals are dependent on the oxygen in the atmosphere to breathe. To breathe, these mammals must surface for air. Other marine mammals such as polar bears, walruses, sea otters, and seals go ashore to breed and raise their young, returning to the ocean only to feed.

Many marine mammals such as whales, dolphins, and manatees never leave the water during their lifetime. They bear and nurse their young in the water. When the young mature, they breed, rest, and feed in the water.

All marine mammals share many similarities including their physical structures and aquatic habitat. Each, however, is adapted to its own special lifestyle and environment. For example, marine mammals that live in cold areas or deep water have developed layers of blubber for insulation, whereas marine mammals that live in warmer waters, such as the manatee, have not.

Marine mammals that are predators or carnivores, such as the polar bear and killer whale, have developed speed, strength, and sharp teeth or claws to

Classification of Marine Mammals			
Cetaceans	Pinnipeds	Sirenians	Other Marine Mammals
toothed whales baleen whales roqual whales right whales gray whales dolphins porpoises	fur seals sea lions walruses true seals	manatees dugongs Steller's sea cow	sea otters (member of weasel family) polar bears (member of bear family)

catch and kill prey. Marine mammals that are herbivores do not have the physical structures of their carnivorous relatives; instead they have grinding molars to break down plants.

Polar Bears: Living on the Ice

polar bear

The marine mammal that is most adapted to land is the polar bear, a member of the bear family (*Ursidae*). The polar bear lives on *ice floes* (pieces of floating ice) and on the shore in the north polar region. It has thick fur and a thick layer of blubber to keep out the arctic cold. The thick fur and blubber also help the polar bear to retain body heat.

The polar bear is mainly a solitary animal and is adapted for living on the land. However, the polar bear occasionally will swim in the arctic waters to catch a seal. Seals are the favorite food of the polar bears. Polar bears are not fast swimmers. They usually catch their prey by stalking seals relaxing in the sun or when seals pop up through holes in the ice.

Sea Otters: Tool Users

Sea otters are the smallest marine mammals. They are closely related to the smaller river otters found in freshwater streams and are members of the weasel family (*Mustelidae*). Sea otters are commonly found in the giant kelp beds

sea otters

along the rocky California coast. They are carnivorous and can eat many different types of ocean creatures including sea urchins, shellfish, and other marine invertebrates.

Sea otters spend much of their time in the oceans diving for food. They must eat constantly to survive. Sea otters are one of the few marine mammals to use "tools" to get their food. For example, when a sea otter eats an abalone, a type of shellfish with a hard exterior shell, its shell must be cracked open. Many sea otters do this while floating on their backs. They place the abalone shell on their stomachs and use a rock to whack the abalone shell until it opens.

Bradycardia: Surviving Long Periods without Oxygen

In order to live, all mammals must breathe and our hearts must pump blood throughout our bodies. These processes carry oxygen to our tissues and remove the waste, carbon dioxide. Any interruption of breathing or circulation threatens our life. Not *all* of the tissues of an animal need to be continuously supplied with fresh oxygen. Most parts of the human body can, and often do, survive *asphyxia* (too little oxygen). The kidney can

Time of Breath Hold and Depth of Dive			
Marine Mammal	Maximum Breath Hold (minutes)	Depth (meters)	
sea otter	4-5	55	
porpoise	6	305	
dolphin	8	650	
killer whale	10	30-60	
manatee	20	10-16	
sea lion	30	168	
true seal	73	575	
sperm whale	90	2,200	

survive without circulation for a similar period. And a transplanted cornea can survive for many hours. The heart and brain, however, are extremely sensitive to asphyxia. Suffocation and heart failure kill a human within a few minutes, and the brain may suffer irreversible damage if its circulation ceases for more than five minutes.

Marine mammals often dive

and remain underwater for periods far longer than five minutes. So how do marine mammals avoid these problems during their very long dives? The simplest explanation would be that diving animals have a large capacity for storing oxygen. But examinations of marine mammals have found that their lungs are not unusually large. Scientists have found, however, that every animal studied exhibits *bradycardia*: a slowing of the heartbeat when the animal is submerged. In addition to slowing down their heartbeat when they dive, marine mammals also close down circulation to many of their body parts while maintaining circulation to the heart and brain. Typically, during a dive, their bodies greatly reduce the blood supply to their muscles, intestines, and parts of their lower bodies.

Manatees: The Gentle Giant

The West Indian manatee, a large, gray-brown aquatic mammal, is known for its gentle nature. The manatee population in the United States is concentrated primarily in Florida. During the winter months in Florida the manatees come to the springfed coastal areas to feed and keep warm. In Florida, manatees can be found in the St. Johns, Suwannee, Crystal, Homasassa,

Courtesy of Pat Rose and Save the Manatee Club

Manatee, Indian, and Wakulla rivers, as well as Blue Springs and other waters and bays along the coast. Little is known about the manatee's ocean migration during the summer.

Anatomy

Manatees look like a gray blimp with a small head and a square snout (nose) with upper lip. The manatee's split lip lets it move each lip separately while tearing off bits of plants to eat. They have an endless supply of molars known as *marching molars*. The molars form in the rear, with six to seven on each side of the jaw and move forward. As older molars in front become worn, they fall out and are replaced by new teeth in the back. The molars are worn down by what the manatee eats abrasive plants that are often mixed with sand.

> The average manatee is about 10 feet long and weighs about 800-1,200 pounds. Large manatees have been known to exceed lengths of 13 feet and weigh over 3,500 pounds. Females are generally larger than males. The manatee's skin is about two inches thick—not quite thick enough to keep out cold. Consequently, manatees catch colds and pneumonia very easily. Manatees seem unable to stand water temperatures below 65 degrees Fahrenheit for any length of time and often die when severe cold spells occur.

The front limbs of manatees are paddle-shaped flippers. Manatees do not have hind limbs but have a fan-shaped tail. They nave no external ears and have very small eyes.

Feeding Habits

Manatees are herbivores, feeding on submerged, emergent, and floating plants. They feed mainly at night but will sometimes graze during the day. On average, manatees return to the surface every three to four minutes. However, manatees can stay underwater for up to 20 minutes. Some of their favorite foods include turtle grass, widgeon grass, and shoal grass—all of which are marine vegetation. Manatees also have favorite freshwater plants such as water hyacinths and water lettuce. Manatees eat about 10 to 15 percent of their body weight daily. Therefore, a 1,000 pound manatee would eat between 100 to 150 pounds a day.

Terminology, Longevity, and the Law

Manatees live a maximum of 50 to 60 years. They belong to the class Mammalia and the order *Sirenia*. Manatees have become **endangered** because poachers once killed them for their meat and skin. Manatees are also killed by motorboats, cold water, and red tides. Many of the manatee's coastal feeding areas are in danger of destruction by dredging, runoff, and herbicide spraying. This coastal destruction is reducing the manatee populations and threatening its survival. It has been estimated that the manatee population in Florida today is about 3,280.

Federal and State Protection Laws		
Marine Mammal Protection Act of 1972	Provides protection for manatee and other marine mammals; includes restrictions on products derived from these animals.	
	Penalty - one year in prison and/or fine up to \$50,000	
Endangered Species Act of 1973	States that it is illegal to kill, hunt, collect, harass, harm, pursue, shoot, trap, wound, or capture a member of an endangered species.	
	Penalty - one year in prison and/or fine up to \$50,000	
Florida Manatee Sanctuary Act of 1978	Established all of Florida as a sanctuary for manatees. Slow and idle speed zones may be established in Florida waterways to protect these animals from boat injuries.	
	Penalty - 60 days in prison and/or fine of \$500	

State and federal laws have been passed to protect manatees. The Endangered Species Act of 1973 and the Marine Mammal Protection Act of 1972 are federal laws which protect manatees. The Florida Manatee Sanctuary Act of 1978 is a state law in Florida.

Seals and Sea Lions: Escaping Extinction

Seals and sea lions inhabit a broad range of climates from the tropics to the polar seas. Seals and sea lions are not common to the Florida coasts and

Seals spend much of their time on rocky beaches.

waters but are common along the California coasts and in polar areas. They spend much of their time out of water on rocky beaches, ice floes, and caves. They migrate long distances and then band together in large groups to breed. Human hunters, in search of the valuable fur and oil of the seal and sea lion, nearly hunted them to extinction. Under protection of some national governments, the seal and sea

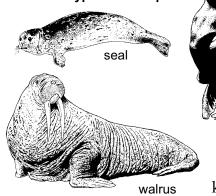
lion have survived. Seals and sea lion pups engage in mock battles, jousting chest to chest, weaving their necks, and nipping and barking. This playful behavior helps males prepare for battles they will engage in as adults. Victorious bulls will mate with females to produce strong offspring.

Anatomy

All four limbs of the seal and sea lion have developed into *flippers*. Sea lions rotate their hind flippers under their bodies so they can "gallop" along on all four flippers. Seals "hump" along, undulating their bodies like caterpillars and pushing with their front flippers. Seals have a more streamlined body than sea lions and are able to swim like fish. Both sea lion and seals have a thick layer of *blubber* between their skin and muscles. This layer of blubber helps them to withstand the cold polar waters. The blubber can also be used for a source of reserve energy, buoyancy, and padding.

Seals and sea lions have large eyes with thick, curved lenses, making them nearsighted on land but able to see well underwater. These mammals also have good hearing.

Seals have no ear flaps but only ear holes, which adds to their streamlined bodies. Sea lions have small ear flaps, similar to those of land mammals. The nose of seals and sea lions is on the front of their snout and not on the top of the head.



Feeding Habits

The diet of seals and sea lions consists of fish and squid. Their teeth are adapted for grasping and tearing, not chewing. Sea lions practice tossing and catching pebbles in their mouths. This skill helps them to catch fish and swallow them head first, avoiding

sea lion

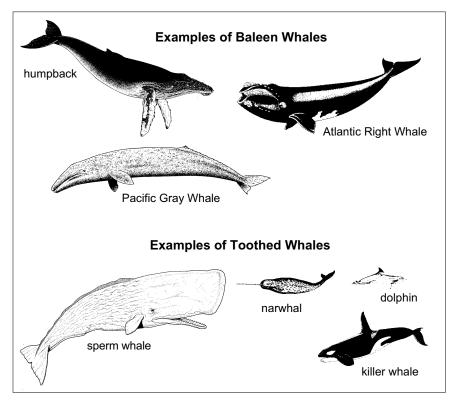
The Three Types of Pinnipeds

injury from spines and scales.

Longevity and Terminology

Seals and sea lions belong in the class Mammalia and the suborder *Pinnipedia*. Pinnipedia means "flipper

footed." Pinnipeds live for about 40 years. Their enemies include man, killer whales, and polar bears.


Whales: Baleen and Toothed

Whales belong to the class Mammalia and the order *Cetacea*. Whales are divided into two groups—whales that have teeth and whales that do not have teeth. Whales that do not have teeth are called **baleen whales**. Instead of teeth, they have a row of whalebone plates attached to their mouths that function like a sieve. During the summer, baleen whales travel to polar regions to feed on the abundant, small shrimp-like organisms called krill. During the other seasons, baleen whales roam the oceans feeding on krill and plankton. The largest baleen whale, the blue whale, may gather three tons of krill a day! The blue whale is the largest animal to have ever lived and may be longer than any dinosaur. Baleen whales are very gentle, slow-moving animals. They do not chase their food but cruise through the open ocean waters water with their mouths open, allowing the baleen plates to collect the krill and plankton like a sieve.

Toothed whales are whales that have small teeth to help them catch fish and other small marine animals for food. The sperm whale is the largest toothed whale, growing to 60 feet in length. The head of the sperm whale is squarish in shape and contains an abundance of oil. Hunters once hunted the sperm whale to near extinction for the oil supply in its head. The well-known fictional sperm whale Moby Dick was hunted by the peglegged Captain Ahab in Herman Melville's novel *Moby Dick*.

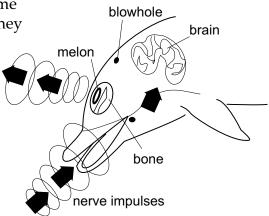
Toothed whales have very good hearing and produce high frequency clicking noises to communicate with other members of their group or pod. Toothed whales also use clicking noises to find prey and to judge distances and speed. Killer whales, another toothed whale, are black and white in color and feed mainly on fish, seals, sea lions, sharks, squid, and penguins. Killer whales are not known to feed on humans.

Dolphins: The Gentle and Social Creatures of the Sea

Dolphins are toothed whales found in all oceans and in some rivers and lakes around the world. They are also common to Florida waters. They exhibit highly intelligent behavior.

Dolphin Anatomy

Because dolphins do not have sweat glands, they must rely on the water to act as a cooling system for their bodies. Consequently, when dolphins are stranded or beached out of water, their body heat will cause them to die. Although dolphins have no ears, they have a


Dolphins never leave the water during their lifetime.

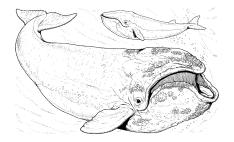
very keen sense of hearing. They depend mostly on **echolocation** to detect objects or prey. They have no sense of smell, even though they have a single opening called a **blowhole** located on the top of the head. The blowhole is connected to the dolphin's lungs. The dolphin's mouth does not connect to the lungs but leads directly to the stomach.

Dolphins have a **fluke**, or tail fin, which propels them through the water. They use their front limbs, or flippers, for balancing and steering. Dolphins also have a small fin on the back—the dorsal fin.

Echolocation: Using Sound to See

Dolphins use echolocation to become familar with their surroundings. They produce sounds such as whistles, squawks, and clicks through the **melon**, a fatty area on their forehead. The melon contains fat tissue which can change in shape, allowing the dolphin to control the sound emitted. They emit these echolocation sounds in pulses to focus on surrounding objects. They emit lower frequencies to get a general picture of

their surroundings. To focus in on a specific object they've found, they use higher frequencies. These sound pulses bounce off objects, and dolphins then "feel" the rebounding sound through their lower jaw. The vibration is then transmitted from the lower jaw to the brain. Echolocation enables dolphins to find food such as fish, octopus, and squid—which they swallow whole, usually head first. A dolphin's echolocation is so exact that dolphins can find half a vitamin pill on the bottom of a pool while blindfolded.

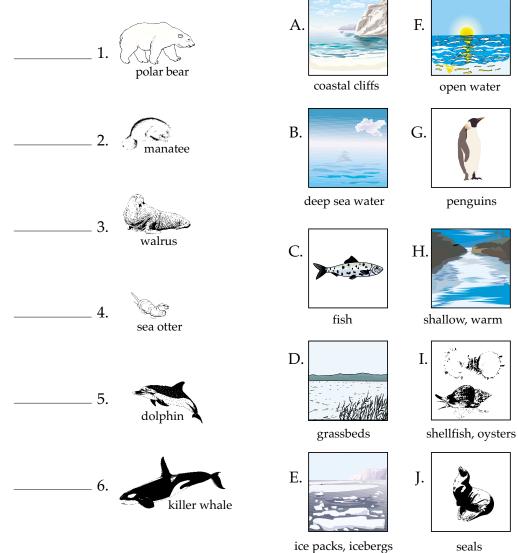


Terminology, Longevity, and the Law

Dolphins belong to the class Mammalia and the order *Cetacea*. The longevity or life span of the dolphin varies between species. The Atlantic bottle-nosed dolphin can reach an age of 25 years or more. Dolphins are protected by the Marine Mammal Protection Act of 1972 (see page 380). The act protects dolphins from being molested by anyone in the United States and provides a **moratorium**, or ban, on capturing and importing marine mammals and marine mammal products.

Summary

Marine mammals share certain traits with land-based mammals. Both breathe air, nurse young, have backbones, grow body hair, and are warmblooded. Marine mammals, however, have adapted to their aquatic environments. They have developed flippers and buoyancy to swim, and *blubber* for warmth.


To survive lengthy dives, marine mammals are capable of *bradycardia*: a slowing of the heart action when the animal is submerged. This trait enables them to remain underwater far longer than a landbased mammal could on the same volume of air.

Notable marine mammals include manatees, dolphins, seals and sea lions, and whales. Manatees are gentle giants that look like gray blimps. In the United States, they are concentrated primarily in Florida. Poachers and motorboats have endangered the manatee and created the need for its protection under law. Seals and sea lions have also been hunted to near extinction. Their valuable fur and oil have made them attractive prey for hunters.

Whales, the largest of the marine mammals, are divided into two groups: those with teeth and those without teeth. *Toothed whales* use their teeth to catch fish and other small marine animals for food. Dolphins—also toothed whales—use *echolocation* to map their surroundings. They emit whistles, squawks, and clicks, and then *read* these sounds as they bounce off surrounding objects. The largest toothed whale—the sperm whale can grow to 60 feet in length. Those whales without teeth, *baleen whales*, swim the ocean with their mouths open, as they collect krill and plankton with their rows of whalebone plates acting like a sieve.

Use this unit and other references to find the **favorite food(s)** and **habitat(s)** of these marine mammals. Write all letters that apply on the line provided.

seals

Use this unit and reference books to answer the following using short answers.

1.	What is <i>echolocation</i> ?
2.	What is <i>bradycardia</i> ?
3.	Why were seals and sea lions nearly hunted to extinction?
4.	Into what two groups are whales divided?
5.	Why and how are manatees protected?
6.	How does the layer of blubber under the skin of seals help them?
7.	How will the playful behavior of sea lion and seal pups be used as
7.	adults?

In this activity, you will use your math skills to **calculate feeding rates of whales** *and* **compare** *this to the* **feeding rates of humans***. Show all work. Place a* **box** *around your final answer.*

Conversion Information:

- A typical human weighs 150 pounds and takes in 3,000 calories a day.
- A typical whale weighs 50 tons and needs 395,000 calories a day.
- A whale may spend 15 hours a day feeding during the summer season.
- A whale can swim at speeds of 1.5 meters per second while feeding.
- A whale can open its mouth 1.5 square meters wide.
- Right whales feed where plankton densities (thickness) are 4,000 to 15,000 per cubic meters.

Problems:

1. How many **cubic meters** of water enter the **open** mouth of the

whale each **minute** as it moves through the water at 1.5 meters per

second?

- How many plankton can a whale ingest per second if the density is
 4,000 per cubic meter? ______
- 3. How many plankton can a whale ingest **per second** if the density is

15,000 per cubic meter? _____

- 4. How many plankton can a whale ingest **per minute** if the density is4,000 per cubic meter? ______
- 5. If a whale ingests 500,000 calories **per day**, how many calories is it

ingesting **per hour**?_____

6. If a whale ingest 500,000 calories **per day**, how many calories is it

7. Complete the following investigation. Tomorrow, keep track of your own food consumption. Complete the chart below with your results.

number of minutes	number of calories	number of calories
you spent feeding	ingested	ingested per minute

8. Compare your caloric intake per minute with that of a whale. Who

has the higher caloric rate? _____

9. What factors account for the difference in caloric intake?

Use this unit and other reference books to complete the chart below. List the **characteristics** *of each of the* **marine mammals** *in a few words or phrases.*

	C	Compariso	n of Marine M	lammals					
M	Mammal Characteristics								
Mammal	nostrils special features		appendages	diet	enemies	habitat			
baleen whales									
sperm whales									
dolphins									
seals									
sea lions									
manatees									
walruses									
polar bears									
sea otters									

Lab Activity 1: Observing Dolphins

Investigate:

• Observe dolphins and record data on eating, swimming, and breathing habits.

Materials:

- pencil video or laser disc
- paper

Procedure:

Observe a dolphin in an aquarium, in the wild, or on a video or laser disc.

Analysis:

1. Where did you observe the dolphin? _____

2. What kind of dolphin was it? _____

3. Describe its shape and color. _____

4. When is the blowhole open? _____

5. When is the blowhole closed? _____

 Count the number of times the blowhole opens and closes. How many times does the dolphin breathe per minute? ______

its speed?
Is the measure and of the delinking fight contribution of the delinking of the contribution of the delinking of the contribution of the delinking of the contribution
Is the movement of the dolphin's fluke vertical or horizontal? How
does this direction of movement help the dolphin?
Watch the front flipper's movement as the dolphin swims. What is
the function of the front flippers?

Lab Activity 2: Marine Mammal Population

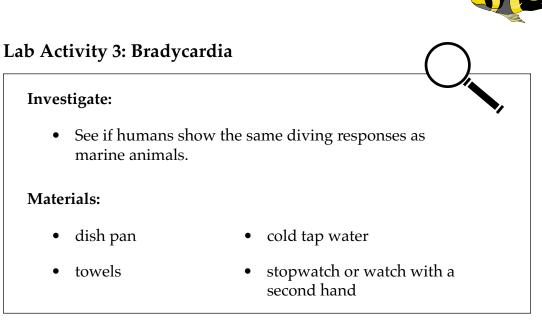
Investigate:

• Investigate how hunting has affected the populations of marine mammals and study specific laws that protect marine mammals.

Materials:

- reference books
- paper

• pencil


• video programs

Procedure:

- 1. Research a marine mammal of your choice.
- 2. Present your research in a poster presentation or a video presentation.

Analysis:

- 1. How has hunting affected the species' population?
- 2. Is the selected species considered endangered?
- 3. Which laws protect this species?_____

Procedure:

- 1. Work in pairs. Record all data as you collect it on the data chart. Sit quietly for two minutes. During this time, your partner can practice taking your pulse. After the two-minute rest, have your partner count the pulse for 15 seconds. Multiply this number by four to find the number of heart beats per minute and record this figure on your chart. Repeat the above twice more, and determine the average for the three trials.
- 2. Rest for two minutes.
- 3. After the rest, practice holding your breath for 35-second periods without activity. Rest for one minute between trials.
- 4. While holding your breath for 35 seconds, have your partner count your pulse the *last 15 seconds of the 35-second period*. Rest and repeat twice more, and determine the average of the three trials.
- 5. *Practice* holding your breath with your face in the pan of cold water for 35 seconds. Submerge your face up to your ears. Have towels ready. When you have your self-confidence established and can do it without excitement, you are ready for the next test.

- 6. With your face in the water up to your ears, have your pulse measured the *last 15 seconds of the 35-second period*. Repeat twice more and determine an average for the three trials, as before. Rest briefly and catch your breath before proceeding to the next procedure.
- 7. Exercise strenuously for two minutes (run in place, do push-ups, situps, jumping jacks). Have your partner determine your pulse *immediately*. Record the beats per minute on the data chart. Repeat step 2 twice more and determine the average rate for the three trials.
- 8. Empty and rinse the pan when finished. Assist your partner; repeat the experiment and collect the data.

	Bradycardia Experiment								
Activity	Pulse Measurements in Beats per Minute								
	resting	1st trial	2nd trial	3rd trial	average				
 Hold breath for 35 seconds; check the last 15 seconds. 									
2. Hold face in cold water for 35 seconds; check pulse the last 15 seconds.									
3. Immediately after two minutes of strenuous exercise, check the pulse again.									

9. Clean up the counters, floor, sinks, and spread the towels out to dry.

Lab Activity 4: Whale Migrations

Investigate:

• Use mapping skills to plot the migration patterns of four unknown whales. After studying the plotted migrations, determine the sex and age of the whales.

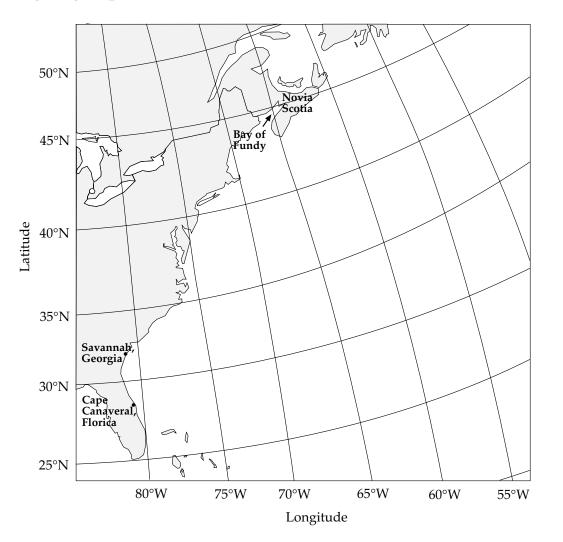
Materials:

- map with coordinates of the east coast of the United States
- whale migration data
 colored pencils

Procedure:

- 1. Read the background information to obtain working knowledge about whale migration.
- 2. Using the *latitude* and *longitude* coordinates from the data chart, plot the migrations of each of the four whales. Plot each whale's migration in a different color. Be sure to include a map legend explaining the color key for each whale.
- 3. Mark each coordinate on the map with a solid triangle pointed downward for the trip south. Use an open triangle pointed upward for the trip back north.

Background information:


Some whales spend the spring off the coast of New England, where they eat plenty of plankton. In the early summer, they head north to breeding and nursery area in the Bay of Fundy and in areas south of Nova Scotia. In the winter, some of the adult females migrate to the coastal waters off the southeastern United States. They particularly like the shallow waters from Savannah, Georgia southward to Cape Canaveral, Florida. Very few juveniles or males migrate to this region. Often, females are alone early in the season. They give birth to their calves and then move back north. Scientist believe that most births occur between December and March. This is the only known calving area for some whales, and it is unknown where the nonpregnant females go.

Data

Wh	Whale #1 Whale #2		Whale #3			Whale #4			
Date	Lat/Long		Date	Lat/Long	Date	Lat/Long		Date	Lat/Long
6 - 01	45/66		6 - 02	45/66	6 - 03	45/66		12 - 02	31/80
6 - 21	44/66		6 - 21	44/66	6 - 21	44/66		12 - 24	30/80
7 - 04	43/69		7 - 03	45/67	7 - 25	43/69		1 - 05	30/81
7 - 25	40/72		7 - 27	44/67	8 - 28	42/70		2 - 28	32/80
8 - 19	39/73		8 - 06	43/67	9 - 07	40/72		3 - 07	34/77
9 - 25	38/74		8 - 31	42/67	9 - 12	37/43		3 - 17	36/75
10 - 25	34/76		9 - 05	42/64	9 - 14	37/47		4 - 01	39/74
11 - 03	33/79		5 - 02	43/67	10 - 05	34/76		4 - 04	41/70
11 - 07	32/80		5 - 18	44/66	1 - 31	31/80		5 - 01	42/69
11 - 19	31/80		5 - 20	45/67	2 - 12	32/78		5 - 20	44/68
12 - 23	1/81		2 - 19	34/75	5 - 25	45/67			
12 - 24	30/80		3 - 17	36/73					
1 - 05	30/81		4 - 02	40/72					
2 - 28	32/80		5 - 15	43/69					
3 - 07	34/77		5 - 18	42/68					
3 - 17	36/75		5 - 21	44/69					
4 - 01	39/74		5 - 25	45/66					
4 - 04	41/70								
5 - 01	42/69								
5 - 20	44/68								
5 - 25	45/67	-							

Sighting Map

Analysis:

1. State if each whale was male or female.

whale 1: _____; whale 2: _____;

whale 3: ______; whale 4: ______

State a logical reason as to how you determined the sex of each whale.
 whale 1: ______

R	
	whale 2:
	whale 3:
	whale 4:
3.	State if each whale is less than one year old, a juvenile,
	or an adult. whale 1:; whale 2:;
	whale 3:; whale 4:
4.	State a logical reason as to how you determined the age of
	each whale.
	whale 1:
	whale 2:
	whale 3:
	whale 4:
5.	What benefit does this journey provide for each whale?
	whale 1:
	whale 2:

whale 3:
whale 4:
What are some of the hazards the whales may encounter during
their migrations?
List the areas within the routes that cause greater risks to the
whales
Determine the average distance traveled between sightings for each
whale. Round to nearest hundredth.
whale 1:
whale 2:
whale 3:
whale 4:
Determine the average traveling speed for each whale. Round to
nearest hundredth.
whale 1:; whale 2:;
whale 3:; whale 4:

Use the list below to write the correct term for each definition on the line provided.

baleen whales blowhole blubber echolocation	fli	dangered ppers Ike	melon moratorium toothed whales		
	1.	whales whic <i>Examples</i> : sp	h have teeth erm whale, dolphin		
	2.	1 0	ted on the top of the hea d dolphins, used for ygen		
	3.	 3. whales without teeth but with r whalebone plates that act as a since feeding <i>Example</i>: blue whale 			
	4.	a legal ban; a of delay	legally authorized peric		
	5.		f dolphins, other whales, ed for balancing and		
	6.	including do	n the forehead of whales, lphins, that controls the pulses and echolocation		
	7.		rine animals, which is the animal warm		
	8.	tail fin of wh	ales, including dolphins		
	9.	use of sound	s to locate objects		
	10.	in danger of or manmade	extinction due to natural factors		

Unit 17: Marine Pollution

Unit Focus

This unit provides students with an overview of the impact of sewage pollution, toxic chemicals, and solid wastes on the marine environment. Students will also have a better understanding of the importance of clean waters to marine organisms.

Student Goals

- 1. Identify types of marine pollution.
- 2. Explain the difference between point-source and nonpoint-source pollutants.
- 3. Describe the effects of pollution on the marine environment and how this impacts humans.
- 4. Describe efforts to cut down on marine pollution.

Vocabulary

Study the vocabulary words and definitions below.

acid rain	. rain containing substances harmful to the environment
biodegradable	. capable of being decomposed by biological agents, especially bacteria
contamination	. corruption, pollution, infection; making impure by contact or mixture
dispersant	. a substance used to drive off or scatter another substance
mechanical containment	a method used to control oil spills by placing booms around the spill to prevent the movement or spreading of the oil
nonpoint-source pollutant	. pollution that does <i>not</i> come directly from one source <i>Example</i> : surface-water runoff, acid rain
oxidation	. the combination of a substance with oxygen or other compounds, involving the loss of electrons
PCBs	. stands for <i>polychlorinated biphenyls,</i> a group of persistent and toxic chemicals used in transformers and capacitors; banned in the United States since 1979
pesticides	. chemicals used to destroy insects

point-source pollutant	. pollution that comes directly from a source <i>Example</i> : raw sewage from a sewage pipe
pollutant	. something that causes contamination, especially a waste material that contaminates air, soil, or water
raw sewage	. untreated liquid and solid waste usually carried off in sewers or drains
thermal pollution	. an artificial increase or decrease in water temperature that disturbs marine life

Introduction: Marine Pollution—The Hazards of Producing Waste

Our oceans are so deep and broad that they may seem to go on forever. Perhaps this sense that beyond the horizon the ocean goes on and on endlessly has permitted us to be less aware and concerned about the waste we dump into it. But now we have reached a critical point: The sewage and other **pollutants** we have dumped in the ocean intentionally and unintentionally—have threatened the balance of life in many marine environments. The question of what to do with our pollutants and how to safeguard against oil-tanker or chemical spills will not go away. But becoming aware of the pollutants and their effects is a good first step toward keeping cities and industries from further damaging our marine environments.

Our rivers, lakes, and other bodies of water do have certain natural properties that help in eliminating pollutants. In one process, bacteria that live in water break down organic wastes. In another process, *nonacidic* (basic) substances in water neutralize destructive acids that fall to Earth in rain and snow. Sunlight penetrating the water also helps to break down certain compounds. And some wastes are destroyed by the simple process

Typical Water Pollutants						
Pesticides	Chemicals	Radioactive Waste				
DDT	acids	radium 226				
2–4 D	ammonia	strontium 90				
	arsenic chlorides					
	phosphates					
	dyes					
	hydrogen sulfide					
	lead					
	mercury					
	nitrates					
	tars					
	urea					
	zinc					

of **oxidation**, or being exposed to the oxygen present in water (H₂0) and the atmosphere.

There are, however, limits to the waters' natural purifying properties. If too much waste is dumped into or enters the water, the natural purifying systems become overloaded and cannot break down the pollutants fast enough. This occurs, for example, when too much **raw sewage** enters the marine system. From feeding on the increasing amount of raw sewage, or organic waste, bacteria multiply and begin

consuming more and more oxygen. The oxygen level drops and leaves fish and other marine organism starving for air. When the oxygen level in water can no longer support life, we call the water *dead*.

Marine Pollution Generated by Our Homes, Industry, and Agriculture

People create sewage during their day-to-day living. They create *raw sewage* when they drain water down sinks, bathtubs, and washing machines, and when they flush waste down toilets. The waste from these daily activities includes soaps, detergents, and human excrement. Other examples of *raw* sewage include rainwater and even melted snow runoff from streets. These forms of raw sewage carry soil particles, leaves, and other litter to marine environments. As you can see from this brief list, marine environments have to purify millions upon millions of gallons of water to keep pace with our waste production.

In addition to these pollutants, consider those produced by our industrial

and agriculture practices. Many modern industries dump pollutants that are not **biodegradable** into oceans and estuaries. *Nonbiodegradable* pollutants cannot be broken down by the waters' natural systems. Plastic products are a common example of a nonbiodegradable pollutant people dump into marine systems. The plastics will remain unchanged for hundreds of years.

Another example of nonbiodegradable pollutants are some **pesticides**, which can become concentrated in bodies or organisms and cause a threat to organisms and to those who eat them.

Industry dumps thousands of different chemicals directly into the marine environment.

Agriculture and industrial production also create *chemical* pollutants. These pollutants often end up fouling our marine environments. For example, fertilizers and pesticides from agriculture production get washed into our water system. And industry dumps thousands of different chemicals directly into the marine environment. Other wastes from industry enter the marine environment through the air in the form of **acid rain**, which falls on and pollutes the water environments.

Industry also releases heated or cooled water into the waterways, a type of pollution known as **thermal pollution**. Other sources of marine pollution include surface and underground mining operations that produce heavy

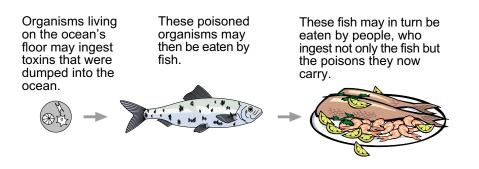
The oil spilled damages the feathers of marine birds.

metals. Uranium mines and nuclear power plants create dangerous radioactive pollutants that take hundreds of years to break down. In addition, ships often pollute the ocean. They spill oil into waterways, either accidentally or by flushing their holds. The oil then clogs the gills of fish and damages the feathers of marine birds and the fur of mammals.

A major source of marine pollution comes from dredged material from rivers, harbors, and channels. These areas must be dredged periodically to keep them clear of sand buildup so ships can navigate these waterways. The

dredged material that is hauled out to sea for disposal contains sediment that has absorbed heavy metals, grease, pesticides, and polychlorinated biphenyls (**PCBs**).

Point- and Nonpoint-Source Pollutants: Tracing Pollution


Pollutants that come directly from a single source are called **point-source pollutants**. Examples of point-source pollutants are wastes carried from a factory or sewage plant into a waterway. Pollutants that have been washed into waterways or that seep into groundwater are **nonpointsource pollutants**. Surface-water runoff is an example of a nonpointsource pollutant. Since nonpoint-source pollutants have no single source, it is nearly impossible to trace them back to the persons or organizations responsible for them.

Effects of Marine Pollution

Different pollutants create different effects on the marine environment. Some pollutants will choke the ocean of necessary oxygen and starve many marine organisms over a long period of time. Other pollutants have more immediate consequences. The *chemical* pollutant *dioxin* is a very toxic substance that kills mosquito minnows at concentrations of one drop per 1,000,000,000,000 drops of water! And other chemicals released into the marine environment become even more dangerous *after* they break down into toxic and cancer-causing substances.

Some poisons in the marine environment can travel through food chains and webs. So, for example, organisms living on the ocean's floor may ingest toxins; these poisoned organisms may then be eaten by fish. These fish may in turn be eaten by people, who ingest not only the fish but the poisons they now carry. As you can see, no matter how inconsequential or far away the marine environment may seem, what happens in the ocean and other waterways creates ripple effects that travel quite far.

Human Health: Polluting Ourselves

People become sick by drinking contaminated water, inhaling diseasecausing organisms, or by being exposed to contaminants at beaches or pools. Waterborne illnesses are most common where living conditions are poor and water purification is not available. The most serious illnesses from poor water quality are cholera and typhoid fever. These diseases are spread through water or food that has been contaminated with the feces or urine of people with diseases. Cholera is caused by bacteria called *Vibiro*. When Vibiro bacteria is ingested, the victim suffers from diarrhea, vomiting, dehydration, and cramps. Typhoid fever is caused by the bacterium *Salmonella typhi*. Symptoms of this disease include fever, headache, and loss of appetite. If this disease is untreated, the victim may develop internal bleeding. Another disease transmitted by water **contamination** is hepatitis A, a viral disease causing inflammation of the liver.

People often ingest dangerous chemicals when they eat contaminated fish or shellfish. In the 1970s, large amounts of PCBs used in the making of electrical appliances were released in the marine environment in the Hudson River area. The PCBs accumulated in the tissues of fish, some of which were eaten by humans. The PCBs caused liver damage and cancer in many who ate the contaminated fish.

The Health of Marine Life: Damaged by Human Hands

Sewage and fertilizers cause tremendous algae blooms in the marine environment. If algae blooms deplete too much oxygen from the water, much of the marine life will die and beaches will become polluted. Some communities used to dump millions of gallons of sewage into the oceans each day. Today, this practice has been outlawed in the United States.

Pollution by people can harm marine organisms in other ways, too. The pH of water is very important to the health of organisms in marine communities. Acid rain lowers the pH of seawater, often to a level that weakens or deforms fish and other organisms. Suspended sediment from dredging harbor floors can limit light penetration, thereby interfering with plant photosynthesis. Other pollutants in the marine environment, such as plastics, cause animals to starve and strangle. Turtles and seabirds often eat plastic bags and other plastic trash, mistaking them for prey. The animals then starve because the plastic prevents them from digesting real food. In addition, birds become trapped or tangled in plastic six-pack rings and can strangle to death.

Thermal Pollution: Changing Temperatures

Power plants release large amounts of heated water into the marine environment. This water is not changed chemically but is used as a cooling agent to absorb the heat created during the power plant process. When the heated water is released into bays or estuaries, the natural water temperature rises, causing *thermal pollution*. Raising the

When the heated water is released into bays or estuaries, the natural water temperature rises, causing thermal pollution.

water temperature of the natural environment reduces the water's ability to absorb oxygen. Lower oxygen levels make it hard for the fish and other organisms to breathe. It also reduces the ability of bacteria to decompose wastes in the water. Higher water temperatures can interfere

with the animals' ability to reproduce as well. It may also increase populations of plants and animals that are not native to the area. In Florida, manatees may remain in colder regions due to the warmth generated by power plant waste. When they move out to feed, they may catch cold in the surrounding waters.

Thermal pollution can be reduced by constructing high cooling towers to cool the water before releasing it into the environment. Pumping thermal water into ponds and allowing it to cool before being released into the ocean is also effective.

Oil Pollution: Catastrophes in the Ocean

There has been pollution of the marine environments due to oil-tanker spills and offshore drilling accidents. One of the most familiar and tragic oil spills occurred on March 24, 1989, in Prince William Sound in the Gulf of Alaska. The oil tanker *Exxon Valdez* struck a reef in the sound and spilled about 11 million gallons of oil into the sound. The oil spill had a serious effect on the ecosystem, the inhabitants of the ecosystem, and the fishermen who depend on the area's waters for their livelihood. The remains of about 1,000 sea otters and 34,000 sea birds have been recovered. The less visible creatures affected by the oil spill were intertidal organisms such as starfish, sea urchins, and young embryonic fish. The exact number of animals who died as a result of the spill will never be determined.

Effect of Oil Spills

Oil spills cause catastrophic damage to marine organisms. An oil spill will affect every type of marine organism—bacteria, algae, zooplankton, fish,

shellfish, birds, and mammals. Some of these marine organisms die immediately from exposure to oily water. Others die slowly or suffer from long-term problems. Clams, sea urchins, lobsters, starfish, and other benthic animals are destroyed by the oil that sinks and covers the ocean bottom. Sea birds landing on top of the oil slicks are soon covered with oil themselves.

With their feathers coated in oil, birds cannot fly and soon starve to death or die from exposure. Some birds, such as the bald eagle, die from the oil they ingest when they feed off of other animals covered in the oily mess.

With their feathers coated in oil, birds cannot fly and soon starve to death or die from exposure.

The oil digested by the eagles coats their intestines preventing the birds from absorbing water and nutrients. The eagles soon die of starvation and dehydration.

When a sea otter is exposed to oily waters, its fur soaks up the oil and loses its ability to keep the otter warm.

Sea otters do not have a thick layer of blubber; instead, they rely on their thick coat of fur for warmth. When a sea otter is exposed to oily waters, its fur soaks up the oil and loses its ability to keep the otter warm. Otters are also poisoned from oil they swallow as they groom their fur to rid it of the oil.

Cleanup Efforts

Cleaning up an oil spill is not as simple as mopping up spilt milk. Many factors such weather conditions, wave height and speed, the spill's distance from the shore, and the readiness of cleanup crews, determine the success or failure in containing an oil spill. Three of the most commonly used methods to clean up oil spills are **mechanical containment**, chemical dispersion, and burning.

Mechanical Containment

Oil can be contained or trapped in an area by placing floating booms in a ring around the oil. The oil, once it is contained, can then be pumped into storage tanks. Booms usually work best in calm waters and when they are put in position soon after the spill happens.

Chemical Dispersion

Dispersants are chemicals which break up the oil. The chemical dispersants, sprayed on the oil spill by planes and helicopters, separate the oil into tiny droplets, allowing the natural chemicals in the water to more easily break up the oil. Chemical dispersants can be used on large spills but must be applied quickly before the oil spreads.

Burning

If the oil in a spill is particularly thick, then burning may be the best method to rid the area of the spill. Burning, however, is only effective in the early stages of a spill. It also causes problems by introducing noxious chemical by-products into the atmosphere which may return as acid rain.

A Future Method

The use of oil-eating bacteria is the newest method of controlling oil spills, but this is still in the experimental stage.

Prevention: Our Only Cure

Since the *Exxon Valdez* tragedy, many regulations have been proposed to prevent future oil spills. Environmentalists strongly promote requiring double-hulled tankers and barges that transport oil. Other suggestions designed to curb oil-spill disasters include better traffic control systems to guide tankers, drug and alcohol screening of ships' pilots, and requiring oil tankers to carry more oil-spill equipment on board.

Summary

The immensity of the oceans may have helped to create a careless attitude about dumping raw sewage and other pollutants in the Earth's waters. We have learned, however, that nonbiodegradable pollutants, both pointsource and nonpoint-source, affect not only the health of marine life but also our own. Water has certain natural purifying properties that can reduce some pollutants, but these properties cannot purify all contaminated water.

Dumping hazardous wastes generated by our homes, industry, and agriculture into the marine environment must be regulated. Chemicals (fertilizers, pesticides), thermal pollution, dredging, PCBs, acid rain, and oil spills are some of the pollutants and sources that must be controlled by government regulations and education.

Dumping hazardous wastes generated by our homes, industry, and agriculture into the marine environment must be regulated.

Use the list above each section to complete the statements in that section. **One or more terms will be used more than once** *only* **in the** *second* **section**.

	Alaska cholera dispersants <i>Exxon Valdez</i>	hepatitis A nonbiodegradable plastic point-source	raw sewage thermal typhoid		
1.	is untreated liquid and solid waste that i				
	carried off in sewers	s or drains.			
2.	. Pollution that comes straight from a single source is called				
		pollution.			
3.	pollutants are those that cannot be				
	broken down by the waters' natural biological systems.				
4.	A common example of a nonbiodegradable pollutant is				
5.	One of the most familiar and tragic oil spills was that caused by the				
		and occurred in Pr	ince William Sound ir		
	the Gulf of	in 1989			
6.	Power plants release	e large amounts of heated	water into the marine		
	environment and ca	use	pollution.		
7.		are chemicals whic	ch break up oil.		
8.	Ingesting contamina	ated water or food may cau	use diseases, including		
		······································	, and		

_ .

prevention acid rain oxidation bacteria PCBs sunlight nonpoint-source 9. Water cleanses itself naturally with _____, _____, and _____. 10. Dredged material hauled out to sea for disposal may contain sediment contaminated with _____. 11. Acid rain is an example of a _____ pollutant. _____ is the only way to cure marine pollution. 12. ____ 13. Eating fish contaminated with _____ may cause liver damage and cancer. 14. Industrial wastes in the air that fall as _____

pollute the water environment.

Practic	e

Answer the following using short answers.

1. What are four causes of marine pollution? _____

2. What are three animals affected by oil spills?_____

What a	re two ways environmentalists are working to prevent oil
spills?	

4	
	What are two ways water can cleanse itself naturally?
5.	What happens if too much raw sewage enters a marine
	environment?
5.	What effect does <i>plastic</i> have on marine animals?
7.	How does <i>thermal pollution</i> affect the marine environment?
3	What is your role in preventing marine pollution?
	····iat is your fole in preventing marine ponation.

Read "How Laws are Made" below. On the following page, you will find four environmental problems to match with the law that was passed to solve it.

How Laws are Made

A member of Congress, in either the Senate or the House of Representatives, may introduce a bill. A bill is an idea for a law. First, a committee gathers information about the bill and debates whether it should become a law.

If the bill passes the committee, it is sent to either the Rules Committee in the Senate or the Rules Committee in the House of Representatives. Where the bill is sent is determined by which legislative branch originally introduced the bill, the Senate or the House. Next, the bill is debated by all the members of the House and the Senate. If the House and Senate pass different versions of the same bill, members of Congress will meet to work out the differences. Then, Congress votes on the new bill.

If the bill passes, it is sent to the President. The President can either sign it into law or veto the bill. The process of establishing new laws is sometimes long and difficult, *but* Congress has passed many laws to protect our environment.

Match each **problem** with the correct **law** and **description of the law** that was passed to solve it. Write the letters on the line provided.

	The Problem	The Law	What It Does
1.	Trash thrown off ships by people can litter beaches and harm sea animals.		
2.	Sea turtles population are so low that they could become extinct.		
3.	Polluted runoff can make drinking water and beaches unsafe.		
4.	Some dolphins and whales were being killed in fishing nets.		

Environmental Laws and Their Descriptions

- A. Creates new programs to control runoff and other water pollution in their cities.
- B. People can be fined \$500,000 for throwing plastic and other trash into the ocean.
- C. CWA: Clean Water Act. An important law to restore the good quality of our county's waters.
- D. MPPRCA: Marine Plastic Pollution Research and Control Act. A law to keep plastic out of the ocean.
- E. Shrimpers must use special gear in their nets to protect sea turtles from getting trapped.
- F. MMPA: Marine Mammal Protection Act. This law works to protect whales and seals from harm.
- G. Creates new programs to stop the accidental entanglement of whales and seals in fishing nets.
- H. ESA: Endangered Species Act. This law works to protect animals and plants whose populations are low.

Lab Activity 1: An Oily Mess

Investigate:

• Investigate how hard it is to clean up an oil spill.

Materials:

- 2 aluminum foil pie pans
- water
- used motor oil
- dropper
 - cotton balls

- nylon string
- paper towels
- dishwashing liquid

)__

- feather
- salt (optional)

Procedure:

- 1. Fill a pie pan half full with water.
- 2. Create an "oil spill" in the water by putting in five to 10 drops of oil. Observe the reaction of the water to the oil.
- 3. Create waves on the "ocean" in the pie pan by blowing on the water or moving the pie pan. Observe the water's movement.
- 4. Dip a feather into the "oil spill." Observe the effect of the oil on the feather.
- 5. Which material—cotton ball, nylon string, or paper towel—cleans up the spill best? Test each material on the spill. Be sure to make a new "spill" if necessary.
- 6. Create an "oil spill" with five to 10 drops of oil in the second pie pan with water. Add five drops of dishwashing liquid to this oil spill. Observe the effect the dishwashing liquid has on the spill.

A	analysis:
1.	Does the oil mix with the water?
2.	What happens to the oil when the water moves?
3.	Why would it be so important to clean up the oil spill immediately
4.	What happened to the appearance of the feather when dipped into
5.	How would oily feathers affect a bird?
6.	How much oil is cleaned up by each of the materials used to test or the spill?
7.	How quickly can these materials clean up the spill?
8.	What problems did you encounter in cleaning up your spill?

What happened to the oil as time passed?
How difficult would it be to clean up the spill if there was a terrible storm?
What happened to the second oil spill when you added the dishwashing detergent?
Where would the oil go in a real ocean?
How "clean" is the water now that it has dishwashing liquid in it?
What's worse—oil or the dishwashing cleaner—in the ocean?

Lab Activity 2: Deadly Waters

Investigate:

• Investigate the problem of pollution through a simulated study.

Materials:

- pollution information
- sheet brown paper bag filled with "tokens"
- M&Ms
- Fruit Loops

Procedure:

1. Read the pollution information sheet (page 428); then classify each of the following pollutants as naturally occurring or manmade.

sediments	detergents
petroleum	heated rain
animal waste	pesticides
organic materials	fertilizer

- 2. You and a partner will analyze the pollution content of a hypothetical river.
- 3. Obtain a brown paper bag filled with "tokens" from your teacher. This bag filled with tokens represents your hypothetical river.
- 4. Each "token" in the bag represents a type of pollution represented on the pollutant information sheet.

- 5. Take each token out one by one, and place each one in the category established by your teacher. For example, if you pull a dark brown M&M from your bag, that M&M represents a sediment. Continue pulling all tokens from the bag until none are left. Be sure to place each token in its specific category.
- 6. After selecting all tokens from the bag, construct a bar graph to represent the pollution content for your river. For your graph, use the same order for the pollutants as listed on your pollution information sheet.
- 7. Some things to remember about your river are the following: a) each token represents one unit of pollution and b) any pollutant over six units (the base level) can cause problems.

Analysis:

(Place your bar graph here.)

1. What does the *base level* represent?_____

2. Do all the pollutants cause problems at seven units? _____

Explain._____

3. Which types of pollutants cause problems at the lowest levels? _____

Why?_____

4. Rank your top five pollutants in order. State whether they will have long-term or short-term effects and what major problems they will cause.

Top Five Pollutants						
Pollutants	Long-Term or Short-Term Effects	Major Problems				
1.						
2.						
3.						
4.						
5.						

5. Which pollutant in "your river" will cause the most significant

problems? _____

Which pollutant will cause the least significant effect?
Describe the probable location of your river (<i>example</i> s: urban, agriculture).
What clues helped you in determining its location?
What is the most likely source of your biggest pollutant? Why?
Would you eat fish caught in your river?

Pollutant Information Sheet Pollutant **Pollutant Token** Sediments **Dark Brown** Particles of soils, sand, silt, clay, and minerals wash from land and paved areas into creeks and tributaries. In unnaturally large quantities, these natural materials can be considered a pollutant. Construction projects often contribute large amounts of sediment. Certain lumbering practices affect sediment in runoff. Sediments may fill stream channels and harbors that later require dredging. Sediments suffocate fish and shellfish populations by covering fish nests and clogging the gills of bottom fish and shellfish. Petroleum Products Red Oil and other petroleum products like gasoline and kerosene can find their way into water from ships, oil-drilling rigs, oil refineries, automobile service stations, and streets. Oil spills kill aquatic life (fish birds, shellfish, and vegetation). Birds are unable to fly when oil loads their feathers. Shellfish and small fish are poisoned. If it is washed on the beach, oil requires much labor to clean up. Fuel oil, gasoline, and kerosene may leak into ground water through damaged underground storage tanks. Light Brown Animal Waste Human wastes that are not properly treated at a waste treatment plant and then released into water may contain harmful bacteria and viruses. Typhoid fever, polio, cholera, dysentery (diarrhea), hepatitis, flu, and common cold germs are examples of diseases caused by bacteria and viruses in contaminated water. The main source of this problem is sewage getting into the water. People can come into contact with these microorganisms by drinking the polluted water or through swimming, fishing, or eating shellfish in polluted waters. Often unexpected flooding of barnyards or stock pens can suddenly increase the toxic effects of animal waste in water. Animal waste can also act as a fertilizer and create damage by increasing nutrients. (see Fertilizers below) Orange **Organic Wastes** Domestic sewage treatment plants, food processing plants, paper mill plants, and leather tanning factories release organic wastes that bacteria consume. If too much waste is released, the bacterial populations increase and use up the oxygen in the water. Fish die if too much oxygen is consumed by decomposing organic matter. Inorganic Compounds Yellow Loops Detergents, pesticides, and many synthetic industrial chemicals are released to waterways. Many of these substances are toxic to fish and harmful to humans. They cause taste and odor problems and often cannot be treated effectively. Some are very poisonous at low concentrations. **Inorganic Chemicals Red Loops** Inorganic chemicals and mineral substances, solid matter, and metal salts commonly dissolve into water They often come from mining and manufacturing industries, oil-field operations, agriculture, and natural resources. These chemicals interfere with natural stream purification, they destroy fish and other aquatic life. They also corrode expensive water treatment equipment and increase the cost of boat maintenance. Fertilizers Green The major source of pollution from agriculture comes from surplus fertilizers in runoff. Fertilizers contain nitrogen and phosphorous that can cause large amounts of algae to grow. The large algae blooms cover the water's surface. The algae die after they have used all of the nutrients. Once dead, they sink to the bottom where bacteria feed on them. The bacterial populations increase and use up most of the oxygen in the water Once the free oxygen is gone, many aquatic animals die. This process is called *eutrophication*. Heated or Cooled Water Orange Loops Heat reduces the ability of water to dissolve oxygen. Electric power plants use large quantities of water in their steam turbines. The heated water is often returned to streams, lagoons, or reservoirs. With less oxygen in the water, fish and other aquatic life can be harmed. Water temperatures that are much lower than normal can also cause habitat damage. Deep dams often let extra water flow downstream. When the water comes from the bottom of the dam, it is much colder than normal. Acid Precipitation Green Loops Aquatic animals and plants are adjusted to a rather narrow range of pH level. pH is a measure of the acidity of a solution. When water becomes too acidic, due to inorganic chemical pollution or from acid rain, fish and other organisms die Pesticides. Herbicides. Funaicides Yellow Agricultural chemicals designed to kill or limit the growth of life forms are a common form of pollution. This pollution results from attempts to limit the negative effects of undesirable species on agricultural crop production. Irrigation, groundwater flow, and natural runoff bring these toxic substances to rivers, streams, lakes, and oceans.

Use the list below to write the correct term for each definition on the line provided.

acid rain biodegradable contamination dispersant mechanical containment nonpoint-source pollutant oxidation	pesticides PCBs point-source pollutant pollutant raw sewage thermal pollution
1.	a method used to control oil spills by placing booms around the spill to prevent the movement or spreading of the oil
2.	stands for <i>polychlorinated biphenyls</i> , a group of persistent and toxic chemicals used in transformers and capacitors; banned in the United States since 1979
3.	rain containing substances harmful to the environment
4.	capable of being decomposed by biological agents, especially bacteria
5.	chemicals used to destroy insects
6.	corruption, pollution, infection; making impure by contact or mixture
7.	an artificial increase or decrease in water temperature that disturbs marine life
8.	pollution that comes directly from a source <i>Example</i> : raw sewage

- 9. pollution that does *not* come directly from one source *Example*: surface-water runoff; acid rain
- 10. something that causes contamination, especially a waste material that contaminates air, soil, or water
- 11. the combination of a substance with oxygen or other compounds, involving the loss of electrons
- 12. a substance used to drive off or scatter another substance
- ____13. untreated liquid and solid waste usually carried off in sewers or drains

Unit 18: Marine Resources

Unit Focus

This unit introduces the student to the delicate balance between humans' use of the ocean and the amount of use that the ocean can tolerate. Students will investigate the importance of the ocean as a natural resource.

Student Goals

- 1. Define marine resources.
- 2. List important living and nonliving marine resources.
- 3. Distinguish between nonrenewable resources and renewable resources.

Vocabulary

Study the vocabulary words and definitions below.

aquaculture	. sea farming; also called <i>mariculture</i>
biological resources	living organisms (plants and animals) from the ocean harvested for commercial use
manganese nodules	rounded lumps of valuable mineral deposits found on the ocean floor containing manganese and other elements; formed from minerals crystallizing from seawater
nonrenewable resources	. sources available in limited amounts; cannot be replenished
physical resources	nonliving resources from the ocean such as minerals, energy, and the water used for recreational purposes
renewable resources	sources that can be replenished
reservoir rock	thick layer of animal and plant remains that accumulate on the continental shelf; often contains productive oil deposits
resource	. a source or supply
spat	. a juvenile oyster
upwelling	process by which deep, cold, nutrient- rich water is brought to the surface usually by water currents or winds that pull water away from the coast

Introduction: Marine Resources—Balancing Use and Overuse

From the earliest moments of civilization, the ocean has provided us with many essential and nonessential **resources**. Marine animals and plants, of course, have provided us with nourishment to survive. Other types of resources including oil and gas have enabled us to develop into industrial societies. Without resources from the ocean, we would not be able to live at the level that many of us enjoy today.

Until recently, many people believed that the ocean would provide *unlimited* resources. As you can well imagine, it is difficult to see any real impact in the ocean even after gathering tons of fish each year or drilling offshore oil wells. However, the ocean's resources have become threatened in a number of different ways.

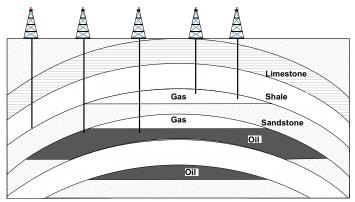
Some of the ocean's resources such as oil and gas are **nonrenewable resources**. There is no natural process that will produce new reserves of these resources. Once we drain our sources of available oil or gas (or many other nonrenewable resources), we will have to learn to live without them. Some resources such as fish and plants are **renewable resources**. These living resources continue to reproduce and provide us with new stores to replenish our stock.

But even renewable resources are not completely safe from destruction by human activities. As we continue to dump our sewage and toxic chemicals in the ocean, we are continuing to kill some or most—perhaps even all—of the food and other resources that we depend on. We also threaten some renewable resources by harvesting too much of them. If, for example, we catch all of a particular kind of fish, there will be none of this type of fish left to reproduce. If a species of fish or other marine organism became extinct, the food web of the ocean and Earth would be damaged. As

resources from the ocean have begun to diminish, we have become aware of just how fragile is the balance of life in the ocean.

Nonrenewable Resources: The Ocean's Natural Resources

In addition to the obvious natural resources—such as oil and gas—industries also mine some other valuable deposits from the ocean. Sulfur is a nonmetallic element used in the production of rubber, insecticides, and pharmaceutical products. Some of the more important metals discovered on oceanic ridges and the ocean floor include zinc, iron, and copper, as well as silver, lead, gold, and platinum. These metals are used in a variety of ways. Zinc and copper, for example, are used in electrical wiring. Gold is also used as an electrical conductor, as well as in jewelry, and as an international monetary standard.



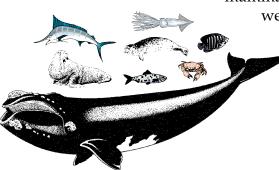
Some resources mined from the ocean provide the construction industry with building materials. Sand, gravel, and shells are collected from the *continental shelf*. The continental shelf is the relatively flat part of the continent covered by seawater, between the coast and the continental slope (see Unit 7). And red clay and *oozes*, or soft mud, have also been mined from the *abyssal plain*, the large, flat regions on the ocean floor, and used in construction. The agriculture industry mines phosphates from the continental shelf for producing fertilizers.

Natural resources from the ocean are *nonrenewable*. Not only does overuse of these resources threaten our limited supply, but our methods of harvesting these resources often damage the marine environment.

Oil and Gas Deposits: Fueling Our Civilization

In our high-energy society, it is easy to see why oil and gas are the most valuable of marine resources. Oil and gas come from the remains of plants and animals that once lived in the rivers or seas. Long ago their remains settled to the ocean

oil and gas deposits in reservoir rock

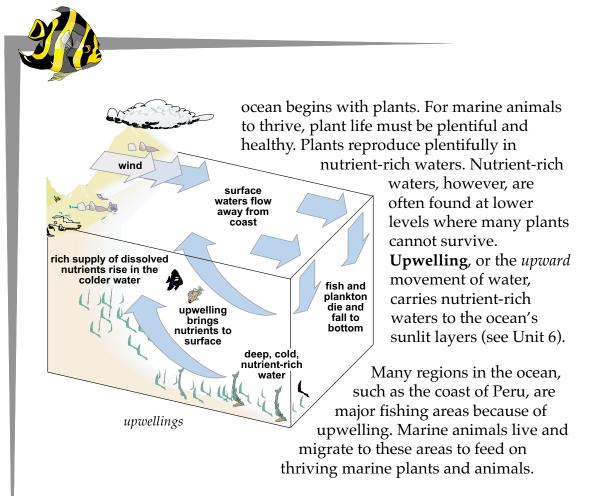

floor. How these remains changed into oil and gas was a long and complex process. Heat, pressure, and time combined to transform these remains into deposits of oil and gas. Oil and gas deposits are usually found in rocks that are no less than two to three million years old. To locate deposits, researchers usually look for areas on the continental shelf that have a thick layer of plant and animal remains. This thick layer is called a **reservoir rock**. Areas of reservoir rock have a high chance of containing productive oil deposits.

Manganese Nodules: A Potential Resource with an Expensive Price Tag

The deep ocean provides an interesting mineral resource called **manganese nodules**. These mineral deposits are round, black and about one inch in diameter. The elements found within manganese nodules have economic value, including copper, nickel, cobalt, and manganese. Recovery of these nodules, however, is quite expensive. Mining of these nodules requires special ships and vacuum-like equipment to sweep them off the ocean's floor. Consequently, mining of manganese is not done on a large scale.

Renewable Resources: Biological (Living) Resources

The **biological resources**, or *living* resources, from the ocean are probably the most important in sustaining our lives. Without marine life to feed on, the world's population would suffer even more greatly from famine and hunger. Most of the food we harvest from the ocean is in the form of fish (tuna, salmon, flounder, and others), crustaceans (shrimp, crab, lobster, and krill), mollusks (squid, clams, mussels, and abalone), and marine



Most of the food we harvest from the ocean is in the form of fish, crustaceans, mollusks, and marine mammals.

mammals (whales and seals). From fish, we also harvest oil to be used in

producing paints, drugs, and other commercial products. Marine plants are also an important food source (see Unit 13). Red and brown seaweed, for example, are common food sources in many Asian nations.

As you know from your earlier reading, the food chain in the

Fishing is not the only method of harvesting biological resources from the ocean. As long ago as 2000 B.C., "farmers" in Japan and China were "growing" different kinds of fish, crustaceans, and mollusks. **Aquaculture**, or *sea* farming, provides many nations with plentiful supplies of food, including oysters, clams, and shrimp, to name just a few.

Oyster farming is an industry in Florida and along the eastern coast of the United States. Baby oysters, called **spats**, float in the currents of the ocean until they come across a shell on the bottom of the ocean floor to which they can attach themselves. To provide the spats with an ideal location to attach and grow, oyster harvesters place shells on the shallow-ocean floor or in an *estuary*. An estuary is an area where a river empties into the ocean or where water from the land drains into the ocean. The spat will stay attached to the shell and grow until large enough to be harvested by the oyster farmers.

Another method used in harvesting oysters is to suspend shells on a wire in the water column. The spats then attach themselves to these shells. The wire-growing method allows sea farmers to grow more spats in a single area and also removes the growing oysters from natural enemies on the ocean's floor, such as starfish. The wire method of growing oysters is primarily used by the Japanese.

Lobsters and shrimp also do very well in aquaculture systems. These organisms are usually grown in an enclosed system supplied with heated water. The heated water increases the speed at which organisms grow in their natural environment.

Renewable Resources: Physical (Nonliving) Resources

As you learned in earlier units, the ocean has many regions of strong moving water. Scientists and engineers have developed ways to capture this force and convert it into usable energy. Perhaps the most obvious of the ocean's **physical resources**, or *nonliving* resources, is simply its water.

It is estimated that the energy available in ocean waves is about 3,000 times the generating capacity of the Hoover Dam. Energy is collected from the tides, waves, and currents by paddle-like wheel mills called *turbines*.

Turbine blades generate electricity.

When high tides come in, their water is trapped in an estuary; when the tide water flows out during the low tide, the water is channeled to turbine blades, which in turn generate electricity. The stronger the tide or current, the faster the blades will turn and the more electricity will be produced. Because the energy that produces tides, waves, and currents

is fairly constant, we can depend on tidal power and wave power as *renewable resources*.

The ocean is one of the most popular areas in which to recreate. It seems that we naturally enjoy the ocean,

and so the ocean has always been a recreational resource for us. Many of us use the oceans for sailing, fishing, scuba diving, surfing, and swimming. Tourists flock to Florida, in particular, to take advantage of the state's beautiful coasts and beaches. In fact, much of the state's revenue comes from tourists who visit our state to enjoy the recreational activities provided by the ocean.

As is true of all resources, overuse and overdependence cause and lead to problems. In Florida, scientists are working on plans that will permit all of us to continue enjoying our water wonderlands without destroying the fragile balance necessary for marine environments to survive.

Summary

The ocean provides us with both *renewable* and *nonrenewable* resources. Minerals are harvested from the ocean for use in construction, drugs, and other commercial products. Oil and gas are essential in sustaining our

high-energy society. Like all natural resources, oil and gas are limited in supply.

Biological resources provide the world with food in the form of fish, crustaceans, and other types of marine life. *Aquaculture*, or sea farming, has been used for thousands of years and continues to help supply the world's population with food.

The ocean also provides renewable energy resources. Tides, waves, and currents turn turbines, which in turn produce energy. The ocean

has always been, and will continue to be, one of the most popular sources for recreation. In part because of its warm waters and beautiful coasts and beaches, Florida has become a leader in tourism in the United States. Great care must be taken to protect both nonrenewable *and* renewable resources for future generations to come.

Use the list below to complete the following statements. **One or more terms will be used more than once.**

	aquaculture biological gas	nonrenewable oil physical	renewable upwelling
1.	The most valuable natur	ral resources from the	
2.	Areas having reservoir r		of containing a(n)
3.	Oil and gas are	re	esources.
4.	A(n) bringing nutrient-rich w		-
5.	The main advantage of t		hat this type of energy
6.		resources are <i>livi</i>	ng resources.
7.	Marine resources which	*	ed are known as
8.	Nonliving resources, suc	h as minerals and tid resources.	al power, are known as
9.	Sea farming is called		

Use the text and other references to complete the chart below. First choose 10 resources from the list below and write them on the chart. Then check whether the resource is renewable (**R**) or nonrenewable (**N**) and biological (**B**) or physical (**P**). Write the uses for each resource and the location where each resource may be found.

crustaceans	iron	nickel	platinum	shells
fish	lead	oil	salt	sulfur
gold	mollusks	phosphates	seaweed	zinc
gola	monusks	pnospnates	seaweed	zinc

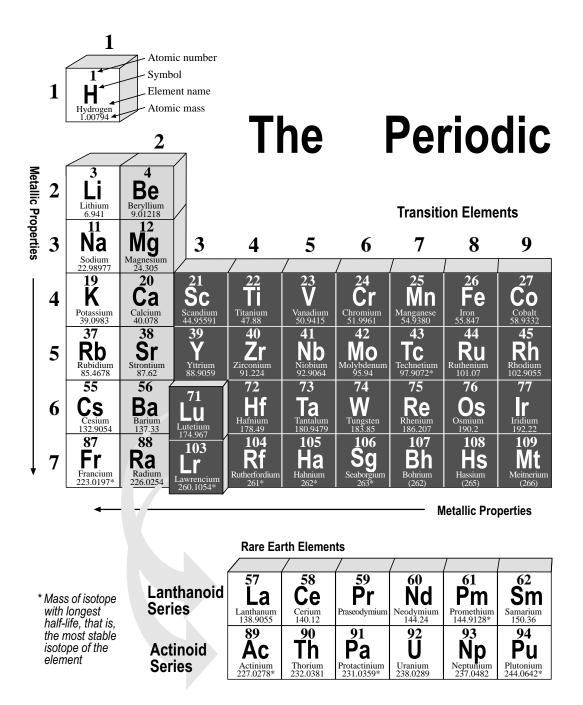
Resources from the Ocean						
Resources	R	Ν	В	Ρ	Uses	Location
1.						
2.						
3.						
4.						
5.						
6.						
7.						
8.						
9.						
10.						

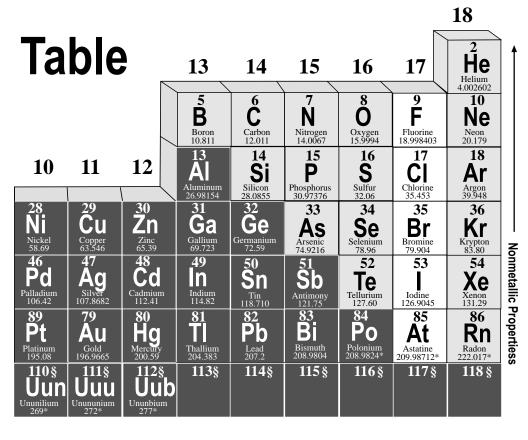
Answer the following using complete sentences

1. How is *oil* formed? _____

- 2. What are *manganese nodules*? _____
- 3. How do oyster farmers *grow* oysters? _____

4. In what ways is the ocean valuable to us?_____




Use the list below to write the correct term for each definition on the line provided.

aquaculture biological resources manganese nodules nonrenewable resources physical resources	renewable resources reservoir rock resource spat upwelling
1. 2.	a source or supply rounded lumps of valuable mineral deposits found on the ocean floor containing manganese and other elements; formed from minerals crystallizing from seawater
3.	process by which deep, cold, nutrient- rich water is brought to the surface usually by water currents or winds that pull water away from the coast
4.	a juvenile oyster
5.	sources that can be replenished
6.	thick layer of animal and plant remains that accumulate on the continental shelf; often contains productive oil deposits
7.	sea farming; also called mariculture
8.	sources available in limited amounts; cannot be replenished
9.	living organisms (plants and animals) from the ocean harvested for commercial use
10.	nonliving resources from the ocean such as minerals, energy, and the water used for recreational purposes

Appendices

Periodic Table

Noble Gases

		, I	/ /	<u> </u>			
E ⁶³ Eu	G4 Gd	Tb ⁶⁵	Dy	67 Ho	Er Er	Tm ⁶⁹	⁷⁰ Yb
Europium 151.96	Gadolinium 157.25	Terbium 158.9254	Dysprosium 162.50	Holmium 164.9304	Erbium 167.26	Thulium 168.9342	Ytterbium 173.04
⁹⁵ Am	⁹⁶ Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 NO
Americium 243.0614*	Curium 247.0703*	Berkelium 247.0703*	Californium 251.0796*	Einsteinium 252.0828*	Fermium 257.0951*	Mendelevium 258.986*	Nobelium 259.1009*

Synthesized elements that are highly unstable. Research on these is continuing and may change what we know about them.

Index

A

abyssal plains	
abyssopelagic zone	
acid	
acid rain	
agar	
Agnatha	
algae	
algin	
amphibians	
ampullae of Lorenzini	
annelids	
aphotic zone	
aquaculture	
arthropods	
atoll	

В

baleen whales	
barrier reef	
base	
basin	
bathypelagic zone	
beach	
benthic	
biodegradable	
biological oceanographers	
biological resources	
biomass	201, 209
biome	
birds	
blade	
blowhole	
blubber	
brackish	
buffer	
buoyancy	

С

capillary waves	93, 99
carbohydrate	
carnivore	
carrageenan	307, 313
cartilage	
cartilaginous	351, 353
caudal	351, 355
chemical oceanographers	
chlorophyll	. 307, 309

Chlorophyta	.307,	312
chordates		
clarity		3, 40
clay		
Cnidaria		
commensalism	201,	212
composition		
condense		
consumers		
contamination		
continental shelf	161,	164
continental slope 137, 141		
convection currents		
copepods	283,	287
coral reef		
corer	33	3, 42
Coriolis effect		
countershading		
course		
crest		
crustaceans		
crystallization		
current		
	,	

D

decomposers	
decompression	
density	
denticles	
desalination	
detritus	
diatom	
dinoflagellates	
dispersant	
disphotic zone	
disruptive coloration	
distillation	
diurnal tide	
dorsal	
dredge	33, 42, 257, 266
drift bottle	
drilling platforms	
dwellers	

Ε

ebb tide	119,	124
echinoderms3	23,	331
echolocation3	75,	384

echo sounding	
elliptical orbit	
emergent	
endangered	
endoskeleton	
epifauna	
epipelagic zone	
equatorial currents	
estuary119, 1	124, 257, 261
evaporate	
Everglades	
exoskeleton	

F

feldspar	
filtration	60, 67
fish	
flagella	
flippers	
flood tide	
fluke	
food chain	
food web	
foraminiferan	
fringing reef	
fusiform	

G

geological oceanographers	
gills	
gill slits	
grab sampler	
Gulf Stream	137, 141
guyots	161, 165
gyres	137, 140

H

habitat	228, 231
hadalpelagic zone	228, 235
hammock	257, 265
hemisphere	137, 140
herbivore	201, 207
holdfast	307, 311
holplankton	283, 287
hydrogenous sediment	181, 183

hydrologic cycle	
hydrolysis	
hydrometer	
hydrosphere	
hydrostatic skeleton	
hypersaline	

I

infauna		238
intertidal zone	119,	126
invertebrates		325
ion	34, 38, 60), 62

K

krill	211
10111	

L

lagoon	258,	269
lamprey	352,	353
larva	283,	285
lateral line	.352,	355
lava	. 181,	186
lipids	202,	205
littoral zone		
longshore current	.137,	144
-		

Μ

	224 221
mammals	,
manganese nodules 181,	190, 433, 437
mangrove	
mariculture	
marigram	
mechanical containment	
megalops	
melon	
meroplankton	
mesh	
mesopelagic zone	
metabolism	
mid-ocean ridge	
minerals	
mixed tide	119, 125
mollusks	

moratorium	
mudflat	
mutualism	
mysis	

Ν

nadir	119, 122
Nansen bottle	
neap tide	119, 124
nekton	
neritic province	228, 232
nonpoint-source pollutant	405, 409
nonrenewable resources	433, 435
nutrients	202, 205

0

ocean	
oceanic province	228, 232
oceanographers	
oceanography	
omnivore	202, 207
ooze	181, 188
operculum	
orbit	
organic	181, 189
oxidation	

Р

parasitism
PCBs
pectoral
pelagic
pelagic sediment
permeability
pesticides
pH
Phaeophyta
phase
photic zone
1
photosynthesis
phylum
physical oceanographers
physical resources
phytoplankton 202, 210, 284, 285
plankton

plankton net	. 34, 43, 284, 290
plunging breaker	
point-source pollutant	
polar currents	
pollutant	
Porifera	
porosity	
predict	
primary consumers	
producers	
protein	
protist	
province	
pseudopod	

Q

quartz182, 184

R

radiolarian	
raw sewage	
renewable resources	
reptiles	
reservoir rock	
resource	
reversing current	
Rhodophyta	
rhythm	
rip current	
rocky coasts	
rogue wave	
100000	

S

salinity	
salt marsh	
sand bar	
scales	
scavengers	
school	
SCUBA	
sea cave	
sea cliffs	
seamounts	
seas	
sea stacks	

seaweed	
secchi disk	
secondary consumers	
sediment	
seine net	
seismic profiling	
semidiurnal tide	
sessile	
side scan sonar	
sodium chloride	
spat	
spawning	
spilling breaker	
spits	
spring tide	
stipe	
sublittoral zone	
submarine canyons	
submergent	
supralittoral zone	
surf zone	
swamp	
swim bladder	
symbiosis	
5	

Т

temperate	
tentacles	
terrace	
terrigenous sediment	
tertiary consumers	
thermal energy	
thermal pollution	
thermocline	
tidal bore	
tidal bulge	
tidal power	
tidal range	
tide	
tide pools	126, 127, 229, 240
titration apparatus	
tolerate	
toothed whales	
topography	
trade winds	
transitional zones	

trawl	
trenches	
trochoidal	
trough	
tsunami	
turbidity currents	

U

underwater research vehi	icle4, 6
upwelling	138, 142, 433, 438

V

ventral	, 355
vertebrates	, 325

W

water vapor	
wave amplitude	
wave height	
wavelength	
waves	
wetlands	258, 259
whitecap	

Ζ

zenith	
zoea	
zoologist	
zooplankton	203, 210, 284, 285

References

- Arms, Karen. *Environmental Science: Holt*. New York, NY: Holt, Rinehart, and Winston, 2000.
- Berrill, N.J. *The Life of the Ocean*. New York, NY: McGraw-Hill Book Company, 1966.
- Bledsoe, Lucy Jane. *Fearon's General Science*. Belmont, CA: Fearon Education, 1990.
- Carter, Katharine Jones. Oceans. Chicago, IL: Children's Press, 1982.
- Costello, David F. *The Seashore World*. New York, NY: Thomas Y. Crowell, Publishers, 1980.
- Coulombe, Deborah A. *The Seaside Naturalist*. New York, NY: Prentice Hall Press, 1987.
- Cousteau, Jacques-Yves. *The Ocean World of Jacques Cousteau, Volume 1: Oasis in Space*. Danbury, CT: The Danbury Press, 1973.
- Cousteau, Jacques-Yves. *The Ocean World of Jacques Cousteau, Volume 10: Mammals in the Sea*. Danbury, CT: The Danbury Press, 1973.
- Cousteau, Jacques-Yves. *The Ocean World of Jacques Cousteau, Volume 11: Provinces of the Sea.* Danbury, CT: The Danbury Press, 1973.
- Cousteau, Jacques-Yves. *The Ocean World of Jacques Cousteau, Volume 19: The Sea in Danger.* Danbury, CT: The Danbury Press, 1973.
- Cowen, Robert. *Frontiers of the Sea*. Garden City, NY: Doubleday and Company, Inc., 1960.
- Delaney, Judith, Wendy Hale and Renee Stone. *Manatees—An Educator's Guide to the Natural History, Habitat, Problems, and Conservation of the Order Sirenia.* Tallahassee, FL: Florida Department of Natural Resources, 1985.
- Duxbury, Alyn C. and Alison B. Duxbury. *Introduction to the World's Oceans*. Dubuque, IA: William C. Brown Publishers, 1989.
- Greene, Thomas. *Marine Science*. New York: Amsco School Publications, 1998.

- Jablonsky, Alice. *Discover Ocean Life*. Lincolnwood, IL: Publications International, Ltd., 1991.
- Karleskint, George. *Introduction to Marine Biology*. Philadelphia, PA: Saunders Publishing Company, 1998.
- Lerman, Matthew. *Marine Biology*. Menlo Park, CA: The Benjamin/ Cummings Publishing Co., Inc., 1986.
- Neilsen T.M. *The Marine Biology Coloring Book*. New York, NY: Barnes and Noble Co., 1982.
- Rosen, Seymour. *Earth Science: Oceans and Atmosphere*. Englewood Cliffs, NJ: Globe Book Co., 1992.
- Sumich, James L. *An Introduction to the Biology of Marine Life*. Dubuque, IA: William C. Brown Publishers, 1988.
- Svarney, Thomas E. and Patricia Barney-Svarney. *The Handy Ocean Answer Book*. Canton, MI: Visible Ink Press, 2000.
- Thurman, Harold V. *Essentials of Oceanography*. Columbus, Ohio: Merrill Publishing Company, 1990.
- Thurman, H. V. and H. H. Webber. *Marine Biology*. Glenview, IL: Scott, Foresman and Company, 1984.
- Voss, Gilbert. *Seashore Life of Florida and the Caribbean.* Miami, FL: Banyan Books, Inc., 1976.
- Whipple, A. B. C. *Restless Oceans*. Alexandria, VA: Time-Life Books, Inc., 1983.

Production Software

Adobe PageMaker 6.5. Mountain View, CA: Adobe Systems.

Adobe Photoshop 5.0. Mountain View, CA: Adobe Systems.

Macromedia Freehand 8.0. San Francisco: Macromedia.

Microsoft Word 98. Redmond, WA: Microsoft.