Algebra I
 Course No. 1200310

Bureau of Exceptional Education and Student Services

Florida Department of Education

This product was developed by Leon County Schools, Exceptional Student Education Department, through the Curriculum Improvement Project, a special project, funded by the State of Florida, Department of Education, Bureau of Exceptional Education and StudentServices, through federal assistance under the Individuals with Disabilities Education Act (IDEA), Part B.

Copyright
State of Florida
Department of State 2009

Authorization for reproduction is hereby granted to the State System of Public Education consistent with Section 1006.39(2), Florida Statutes. No authorization is granted for distribution or reproduction outside the State System of Public Education without prior approval in writing.

Algebra I
 Course No. 1200310

content revised by
Sylvia Crews
Sue Fresen
developed and edited by
Sue Fresen
graphics by
Jennifer Keele
Rachel McAllister
page layout by
Jennifer Keele
Rachel McAllister
Curriculum Improvement Project
IDEA, Part B, Special Project
IEON tOUNTY SLHOOLS
Exceptional Student Education

http://www.leon.k12.fl.us/public/pass/

Curriculum Improvement Project

Sue Fresen, Project Manager
Leon County Exceptional Student Education (ESE)
Ward Spisso, Executive Director of Exceptional Student Education
Pamela B. Hayman, Assistant Principal on Special Assignment

Superintendent of Leon County Schools

Jackie Pons

School Board of Leon County

Joy Bowen, Chair
Dee Crumpler
Maggie Lewis-Butler
Dee Dee Rasmussen
Forrest Van Camp

Table of Contents

Acknowledgments xv
Unit 1: Are These Numbers Real? 1
Unit Focus 1
Vocabulary 3
Introduction 11
Lesson One Purpose 11
The Set of Real Numbers 12
Practice 16
Practice 17
Practice 18
Practice 19
Practice 20
Lesson Two Purpose 21
The Order of Operations 22
Adding Numbers by Using a Number Line 25
Opposites and Absolute Value 28
Adding Positive and Negative Integers 30
Subtracting Integers 33
Practice 35
Practice 38
Practice 39
Multiplying Integers 40
Practice 42
Dividing Integers 43
Practice 46
Practice 47
Practice 49
Practice 50
Practice 52
Lesson Three Purpose 53
Algebraic Expressions 54
Practice 55
Practice 57
Lesson Four Purpose 58
Working with Absolute Value 59
Practice 60
Practice 61
Practice 63
Practice 65
Unit Review 66
Unit 2: Algebraic Thinking 71
Unit Focus 71
Vocabulary 73
Introduction 81
Lesson One Purpose 81
Solving Equations 83
Practice 85
Interpreting Words and Phrases 88
Practice 89
Solving Two-Step Equations 91
Practice 93
Special Cases 97
Practice 101
Practice 103
Practice 104
Lesson Two Purpose 105
The Distributive Property 106
Practice 110
Simplifying Expressions 112
Practice 114
Practice 116
Equations with Like Terms 117
Practice 119
Putting It All Together 124
Practice 127
Practice 130
Lesson Three Purpose 132
Solving Equations with Variables on Both Sides 133
Practice 136
Problems That Lead to Equations 140
Practice 142
Practice 148
Practice 157
Lesson Four Purpose 158
Graphing Inequalities on a Number Line 159
Practice 163
Solving Inequalities 165
Practice 168
Practice 170
Practice 174
Practice 175
Practice 176
Lesson Five Purpose 177
Formulas Using Variables 178
Practice 180
Unit Review 182
Unit 3: Working with Polynomials 189
Unit Focus 189
Vocabulary 191
Introduction 199
Lesson One Purpose 199
Polynomials 200
Practice 202
Practice 203
Practice 204
Lesson Two Purpose 205
Addition and Subtraction of Polynomials 206
Practice 209
Practice 212
Lesson Three Purpose 215
Multiplying Monomials 216
Practice 218
Practice 220
Lesson Four Purpose. 222
Dividing Monomials 223
Practice 226
Practice 228
Lesson Five Purpose 230
Multiplying Polynomials 231
Practice 236
Practice 242
Lesson Six Purpose 245
Factoring Polynomials 246
Practice 249
Practice 252
Practice 255
Lesson Seven Purpose 256
Factoring Quadratic Polynomials 257
Practice 260
Practice 262
Practice 264
Practice 266
Practice 268
Practice 271
Unit Review 272
Unit 4: Making Sense of Rational Expressions 277
Unit Focus 277
Vocabulary 279
Introduction 287
Lesson One Purpose 287
Simplifying Rational Expressions 289
Practice 291
Practice 293
Additional Factoring 295
Practice 296
Practice 297
Practice 299
Practice 300
Practice 301
Lesson Two Purpose 303
Addition and Subtraction of Rational Expressions 304
Finding the Least Common Multiple (LCM) 304
Practice 307
Practice 308
Practice 310
Practice 312
Lesson Three Purpose 313
Multiplication and Division of Rational Expressions 314
Practice 315
Practice 316
Practice 318
Practice 319
Practice 321
Lesson Four Purpose 322
Solving Equations 323
Practice 324
Step-by-Step Process for Solving Equations 325
Practice 331
Practice 333
Practice 335
Practice 337
Lesson Five Purpose 339
Solving Inequalities 340
Practice 344
Practice 348
Practice 351
Unit Review 352
Unit 5: How Radical Are You? 359
Unit Focus 359
Vocabulary 361
Introduction 365
Lesson One Purpose 365
Simplifying Radical Expressions 366
Rule One 366
Practice 369
Practice 370
Rule Two 371
Practice 373
Practice 374
Practice 375
Lesson Two Purpose 376
Add and Subtract Radical Expressions 376
When Radical Expressions Don't Match or Are Not in Radical Form 378
Practice 379
Practice 381
Lesson Three Purpose 383
Multiply and Divide Radical Expressions 383
Practice 384
Working with a Coefficient for the Radical 386
Practice 387
Practice 389
Lesson Four Purpose 391
Multiple Terms and Conjugates 391
Practice 393
The FOIL Method 395
Practice 396
Two-Term Radical Expressions 399
Practice 402
Practice 404
Practice 406
Unit Review 407
Unit 6: Extreme Fractions 411
Unit Focus 411
Vocabulary 413
Introduction 419
Lesson One Purpose 419
Ratios and Proportions 420
Practice 422
Using Proportions Algebraically 424
Practice 425
Practice 427
Lesson Two Purpose 428
Similarity and Congruence 429
Practice 430
Using Proportions Geometrically 433
Practice 435
Using Proportions to Find Heights 438
Practice 440
Practice 442
Unit Review 443
Unit 7: Exploring Relationships with Venn Diagrams 449
Unit Focus 449
Vocabulary 451
Introduction 455
Lesson One Purpose 455
Sets 456
Practice 458
Practice 459
Lesson Two Purpose 461
Unions and Intersections 462
Practice 466
Practice 468
Lesson Three Purpose 472
Complements 473
Practice 474
Complements in Venn Diagrams 476
Practice 477
Lesson Four Purpose. 478
Cartesian Cross Products. 479
Practice 480
Practice 481
Lesson Five Purpose 482
Using Venn Diagrams for Three Categories 483
Practice 488
Practice 489
Unit Review 491
Unit 8: Is There a Point to This? 497
Unit Focus 497
Vocabulary 501
Introduction 509
Lesson One Purpose 509
Distance 511
Practice 517
Practice 527
Practice 528
Using the Distance Formula 529
Practice 532
Practice 535
Lesson Two Purpose 537
Midpoint 538
Method One Midpoint Formula 539
Practice 540
Method Two Midpoint Formula 542
Practice 544
Practice 546
Lesson Three Purpose 547
Slope 549
Practice 553
Lesson Four Purpose 557
Equations of Lines 558
Practice 562
Slope-Intercept Form 568
Practice 571
Transforming Equations into Slope-Intercept Form 577
Practice 578
Practice 584
Lesson Five Purpose 585
Parallel and Perpendicular Lines 586
Practice 587
Practice 590
Practice 592
Practice 593
Lesson Six Purpose 594
Point-Slope Form 595
Practice 600
Unit Review 606
Unit 9: Having Fun with Functions 617
Unit Focus 617
Vocabulary 619
Introduction 625
Lesson One Purpose 625
Functions 627
Practice 628
Practice 629
Graphs of Functions 631
Practice 632
Practice 634
Lesson Two Purpose 635
The Function of X 636
Practice 637
Lesson Three Purpose 640
Graphing Functions 641
Practice 644
Practice 645
Linear Relations in the Real World 649
Practice 650
More about the Slope of a Line 658
Practice 659
Practice 661
Practice 663
Lesson Four Purpose. 665
Graphing Quadratics 666
Practice 669
Solving Quadratic Equations 677
Practice 679
Practice 689
Unit Review 690
Unit 10: X or (X, Y) Marks the Spot! 701
Unit Focus 701
Vocabulary 705
Introduction 713
Lesson One Purpose 713
Quadratic Equations 715
Practice 717
Factoring to Solve Equations 719
Practice 721
Practice 724
Practice 725
Solving Word Problems 726
Practice 728
Practice 730
Using the Quadratic Formula 731
Practice 734
Practice 740
Lesson Two Purpose 746
Systems of Equations 748
Practice 753
Using Substitution to Solve Equations 759
Practice 761
Using Magic to Solve Equations. 767
Practice 769
Solving More Word Problems 771
Practice 773
Practice 775
Practice 776
Lesson Three Purpose 777
Graphing Inequalities 778
Practice 782
Graphing Multiple Inequalities 790
Practice 795
Practice 801
Unit Review 802
Appendices 815
Appendix A: Table of Squares and Approximate Square Roots 817
Appendix B: Mathematical Symbols 819
Appendix C: Mathematics Reference Sheet 821
Appendix D: Graph Paper 823
Appendix E: Index 825
Appendix F: References 829

Acknowledgments

The staff of the Curriculum Improvement Project wishes to express appreciation to the content revisor and reviewers for their assistance in the development of Algebra I. We also wish to express our gratitude to educators from Broward, Hillsborough, Indian River, Leon, Okeechobee, Orange, Pasco, Pinellas, Polk, Sarasota, St. Lucie, and Volusia county school districts for the initial Parallel Alternative Strategies for Students (PASS) Mathematics volumes.

Content Revisor

Sylvia Crews, Mathematics Teacher
Department Chair
School Advisory Committee Chair Leon High School
Tallahassee, FL

Review Team

Lao Alovus, Exceptional Student
Education (ESE) Teacher
School for Arts and Innovative
Learning (SAIL) High School
Tallahassee, FL
Janet Brashear, Hospital/Homebound
Program Coordinator
Program Specialist
Exceptional Student Education (ESE)
Indian River County School District
Vero Beach, FL
Todd Clark, Chief
Bureau of Curriculum and Instruction
Florida Department of Education
Tallahassee, FL
Vivian Cooley, Assistant Principal
Rickards High School
Tallahassee, FL
Kathy Taylor Dejoie, Program
Director
Clearinghouse Information Center
Bureau of Exceptional Education and Student Services
Florida Department of Education
Tallahassee, FL

Veronica Delucchi, English for Speakers of Other Languages (ESOL) Coordinator
Pines Middle School
Pembroke Pines, FL
Heather Diamond, Program Specialist for Specific Learning Disabilities (SLD)
Bureau of Exceptional Education and Student Services
Florida Department of Education
Tallahassee, FL
Steven Friedlander, Mathematics Teacher
Lawton Chiles High School 2007 Edyth May Sliffe Award
President, Florida Association of Mu Alpha Theta
Past Vice President, Leon County Council of Teachers of Mathematics (LCTM)
Tallahassee, FL

Debbie Gillis, Assistant Principal
Okeechobee High School
Past Treasurer, Florida Council of
Teachers of Mathematics (FCTM)
Okeechobee, FL
Mark Goldman, Honors Program
Chairman and Professor
Tallahassee Community College
2009 National Institute for Staff and Organizational Development (NISOD) Lifetime Teaching Excellence Award
Past President, Leon Association for Children with Learning Disabilities (ACLD)
Parent Representative, Leon County Exceptional Student Education (ESE) Advisory Committee Tallahassee, FL

Kathy Kneapler, Home School Parent Palm Bay, FL

Edythe M. MacMurdo, Mathematics Teacher
Department Chair
Seminole Middle School
Plantation, FL
Daniel Michalak, Mathematics Teacher
Timber Creek High School
Orlando, FL
Jeff Miller, Mathematics Teacher
Gulf High School
New Port Richey, FL

Production Staff

Sue Fresen, Project Manager
Jennifer Keele, Media Production Specialist
Rachel McAllister, Media Production Specialist
Curriculum Improvement Project
Tallahassee, FL

Unit 1: Are These Numbers Real?

This unit recalls the relationships between sets of real numbers and the rules involved when working with them.

Unit Focus

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 10: Mathematical Reasoning and Problem Solving

- MA.912.A.10.1

Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guessing- and-checking, solving a simpler problem, writing an equation, working backwards, and creating a table.

- MA.912.A.10.3

Decide whether a given statement is always, sometimes, or never true (statements involving linear or quadratic expressions, equations, or inequalities, rational or radical expressions, or logarithmic or exponential functions).

Vocabulary

Use the vocabulary words and definitions below as a reference for this unit.
absolute value \qquad a number's distance from zero (0) on a number line; distance expressed as a positive value Example: The absolute value of both 4, written $|4|$, and negative 4 , written $|-4|$, equals 4 .

addend \qquad any number being added
Example: In $14+6=20$, the addends are 14 and 6.
additive identity \qquad the number zero (0); when zero (0) is added to another number the sum is the number itself Example: $5+0=5$
additive inverses \qquad a number and its opposite whose sum is zero (0); also called opposites

Example: In the equation $3+(-3)=0$, the additive inverses are 3 and -3 .
algebraic expression \qquad an expression containing numbers and variables ($7 x$) and operations that involve numbers and variables $\left(2 x+y\right.$ or $\left.3 a^{2}-4 b+2\right)$; however, they do not contain equality ($=$) or inequality symbols $(<,>, \leq, \geq$, or \neq)
associative property \qquad the way in which three or more numbers are grouped for addition or multiplication does not change their sum or product, respectively
Examples: $(5+6)+9=5+(6+9)$ or

$$
(2 \times 3) \times 8=2 \times(3 \times 8)
$$

braces \{ \} \qquad grouping symbols used to express sets commutative property \qquad the order in which two numbers are added or multiplied does not change their sum or product, respectively Examples: $2+3=3+2$ or $4 \times 7=7 \times 4$	
	counting numbers (natural numbers) \qquad the numbers in the set $\{1,2,3,4,5, \ldots\}$
	cube (power) \qquad the third power of a number Example: $4^{3}=4 \times 4 \times 4=64$; 64 is the cube of 4
	decimal number \qquad any number written with a decimal point in the number Examples: A decimal number falls between two whole numbers, such as 1.5, which falls between 1 and 2 . Decimal numbers smaller than 1 are sometimes called decimal fractions, such as five-tenths, or $\frac{5}{10}$, which is written 0.5.
	difference \qquad a number that is the result of subtraction Example: In $16-9=7$, the difference is 7 .
	digit \qquad any one of the 10 symbols $0,1,2,3,4,5,6,7,8$, or 9
	element or member one of the objects in a set
	empty set or null set (ø)a set with no elements or members
	equation \qquad a mathematical sentence stating that the two expressions have the same value Example: $2 x=10$

member or element \qquad one of the objects in a set
multiples \qquad the numbers that result from multiplying a given whole number by the set of whole numbers
Example: The multiples of 15 are $0,15,30,45$, 60, 75, etc.
natural numbers
(counting numbers)the numbers in the set $\{1,2,3,4,5, \ldots\}$
negative integers \qquad integers less than zero
negative numbers \qquad numbers less than zero
null set (ø) or empty set a set with no elements or members
number line \qquad a line on which ordered numbers can be written or visualized

odd integer \qquad any integer not divisible by 2 ; any integer with the digit $1,3,5,7$, or 9 in the units place; any integer in the set $\{\ldots,-5,-3,-1,1,3,5, \ldots\}$
opposites \qquad two numbers whose sum is zero; also called additive inverses
$\begin{array}{ccc}\text { Examples: }-5+5=0 & \text { or } & \frac{2}{3}+\left(-\frac{2}{3}\right)=0 \\ \uparrow \uparrow \\ \text { opposites } & \uparrow \uparrow \uparrow \uparrow \\ \uparrow & \text { opposites }\end{array}$
order of operationsthe order of performing computations in parentheses first, then exponents or powers, followed by multiplication and / or division (as read from left to right), then addition and/ or subtraction (as read from left to right); also called algebraic order of operations Example: $5+(12-2) \div 2-3 \times 2=$

$$
5+10 \div 2-3 \times 2=
$$

$$
5+5-6=
$$

$$
10-6=
$$

4
pattern (relationship)a predictable or prescribed sequence of numbers, objects, etc.; may be described or presented using manipulatives, tables, graphics (pictures or drawings), or algebraic rules (functions)
Example: 2, 5, 8, $11 \ldots$ is a pattern. Each number in this sequence is three more than the preceding number. Any number in this sequence can be described by the algebraic rule, $3 n-1$, by using the set of counting numbers for n.
pi (π) \qquad the symbol designating the ratio of the circumference of a circle to its diameter; an irrational number with common approximations of either 3.14 or $\frac{22}{7}$
positive integers \qquad integers greater than zero
positive numbers \qquad numbers greater than zero
power (of a number) \qquad an exponent; the number that tells how many times a number is used as a factor Example: In $2^{3}, 3$ is the power.
product the result of multiplying numbers togetherExample: In $6 \times 8=48$, the product is 48 .
quotient

\qquad
the result of dividing two numbersExample: In $42 \div 7=6$, the quotient is 6 .
ratio
\qquadthe comparison of two quantitiesExample: The ratio of a and b is $a: b$ or $\frac{a}{b}$, where$b \neq 0$.
rational number

\qquad
a number that can be expressed as a ratio $\frac{a}{b}$,where a and b are integers and $b \neq 0$
real numbers
\qquadthe set of all rational and irrational numbersrepeating decimal
\qquada decimal in which one digit or a series ofdigits repeat endlesslyExamples: $0.3333333 \ldots$ or $0 . \overline{3}$$24.6666666 \ldots$ or $24 . \overline{6}$
$5.27272727 \ldots$ or $5 . \overline{27}$
6.2835835... or 6.2835root
\qquadan equal factor of a numberExamples:In $\sqrt{144}=12$, the square root is 12 .In $\sqrt[3]{125}=5$, the cube root is 5 .set
\qquad a collection of distinct objects or numbers
simplify an expressionto perform as many of the indicated operations as possible
solve
to find all numbers that make an equation or inequality true
square (of a number) \qquad the result when a number is multiplied by itself or used as a factor twice Example: 25 is the square of 5 .
sum \qquad the result of adding numbers together Example: In $6+8=14$, the sum is 14 .
terminating decimal \qquad a decimal that contains a finite (limited) number of digits
Example: $\frac{3}{8}=0.375$
$\frac{2}{5}=0.4$
value (of a variable)any of the numbers represented by the variable
variable \qquad any symbol, usually a letter, which could represent a number

Venn diagram \qquad a diagram which shows the relationships between sets
whole numbers \qquad the numbers in the set $\{0,1,2,3,4, \ldots\}$

Unit 1: Are These Numbers Real?

Introduction

The focus of Algebra I is to introduce and strengthen algebraic skills. These skills are necessary for further study and success in mathematics. Algebra I fosters

- an understanding of the real number system
- an understanding of different sets of numbers
- an understanding of various ways of representing numbers.

Many topics in this unit will be found again in later units. There is an emphasis on problem solving and real-world applications.

Lesson One Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Standard 10: Mathematical Reasoning and Problem Solving

- MA.912.A.10.1

Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guessing- and-checking, solving a simpler problem, writing an equation, working backwards, and creating a table.

- MA.912.A.10.3

Decide whether a given statement is always, sometimes, or never true (statements involving linear or quadratic expressions, equations, or inequalities, rational or radical expressions, or logarithmic or exponential functions).

The Set of Real Numbers

A set is a collection. It can be a collection of DVDs, books, baseball cards, or even numbers. Each item in the set is called an element or member of the set. In algebra, we are most often interested in sets of numbers.

The first set of numbers you learned when you were younger was the set of counting numbers, which are also called the natural numbers. These are the positive numbers you count with ($1,2,3,4,5, \ldots)$. Because this

A set can be a collection of books or numbers. set has no final number, we call it an infinite set. A set that has a specific number of elements is called a finite set.

Symbols are used to represent sets. Braces \{ \} are the symbols we use to show that we are talking about a set.

A set with no elements or members is called a null set (ø) or empty set. It is often denoted by an empty set of braces \{\}.

The set of counting numbers looks like $\{1,2,3, \ldots\}$.
\square Remember: The counting numbers can also be called the natural numbers, naturally!

The set of natural number multiples of 10 is $\{10,20,30, \ldots\}$.
The set of integers looks like $\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$.
The set of integers that are multiples of 10 is
$\{\ldots,-30,-20,-10,10,20,30, \ldots\}$.
As you became bored with simply counting, you learned to add and subtract numbers. This led to a new set of numbers, the whole numbers.

The whole numbers are the counting numbers and zero $\{0,1,2,3, \ldots\}$.

Remember getting negative answers? Those negative numbers made another set of numbers necessary. The integers are the counting numbers, their opposites (also called additive inverses), and zero.

The integers can be expressed (or written) as
$\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.
Even integers are integers divisible by 2 . The integers
$\{\ldots,-4,-2,0,2,4, \ldots\}$ form the set of even integers.
(I) 3 Remember: Every even integer ends with the digit 0, 2, 4,6, or 8 in its ones (or units) place.

Odd integers are integers that are not divisible by 2 . The integers $\{\ldots,-5,-3,-1,1,3,5, \ldots\}$ form the set of odd integers.
(c) \longrightarrow Remember: Every odd integer ends with the digit 1, 3, 5, 7 , or 9 in its units place.

Note: There are no fractions or decimals listed in the set of integers above.
When you learned to divide and got answers that were integers, decimals, or fractions, your answers were all from the set of rational numbers.

Rational numbers can be expressed as fractions that can then be converted to terminating decimals (with a finite number of digits) or repeating decimals (with an infinitely repeating sequence of digits). For example, $-\frac{3}{5}=-0.6, \frac{6}{2}=3,-\frac{8}{4}=-2$ and $\frac{1}{3}=0.333 \ldots$ or $0 . \overline{3}$.

As you learned more about mathematics, you found that some numbers are irrational numbers. Irrational numbers are numbers that cannot be written as a ratio, or a comparison of two quantities because their decimals never repeat a pattern and never end.

Irrational numbers like $\boldsymbol{\pi}$ (pi) and $\sqrt{5}$ have non-terminating, non-repeating decimals.

If you put all of the rational numbers and all of the irrational numbers together in a set, you get the set of real numbers.

The set of real numbers is often symbolized with a capital R .
A diagram showing the relationships among all the sets mentioned is shown on the following page.

\square Remember: Real numbers include all rational numbers and all irrational numbers.

The diagram below is called a Venn diagram. A Venn diagram shows the relationships between different sets. In this case, the sets are types of numbers.

The Set of Real Numbers

rational numbers (real numbers that can be expressed as a ratio $\frac{a}{b}$, where a and b are integers and $b \neq 0$)	irrational numbers (real numbers that cannot be expressed as a ratio of two integers)
$\sqrt{0.16}$ integers $\frac{5}{6}$	
(whole numbers and their opposites) $\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$	π
(zero and natural numbers) ${ }^{\text {a0, }, 2,3,4, \ldots\}}$ (9	$0.010010001 \ldots$
	$\sqrt{120}$
0.09	

Practice

Match each description with the correct set. Write the letter on the line provided.

	1. $\{2,3,4,5,6\}$
	2. $\{0,1,2,3\}$
	3. $\{3,6,9,12, \ldots\}$
	4. $\{-2,0,2\}$
	5. $\{6,12,18, \ldots\}$
6. $\{1,2,3,4,5\}$	
7. $\{-3,-1,1,3\}$	
	8. $\{\ldots,-18,-12,-6,0,6,12,18, \ldots\}$

A. \{counting numbers between 1 and 7\}
B. Seven integers between -3 and 4$\}$
C. \{first five counting numbers\}
D. \{first four whole numbers\}
E. \{integers that are multiples of 6$\}$
F. \{natural-number multiples of 3$\}$
G. \{odd integers between -4 and 5$\}$
8. $\{\ldots,-18,-12,-6,0,6,12,18, \ldots\}$
H. \{whole number multiples of 6$\}$

Write finite if the set has bounds and is limited. Write infinite if the set has no boundaries and is not limited.
\qquad 1. $\{$ whole numbers less than $1,000,000\}$
2. \{natural numbers with four digits\}
3. \{whole numbers with 0 as the last numeral\}
4. \{real numbers between 6 and 8$\}$
5. $\{$ counting numbers between 2 and 10\}
6. \{first five counting numbers\}
7. \{natural-number multiples of 5$\}$
8. \{integers less than $1,000,000\}$
9. \{counting numbers with three digits\}
10. \{whole numbers with 5 as the last numeral\}

Practice

Write True if the statement is correct. Write False if the statement is not correct.
\qquad 1. 7 is a rational number.
\qquad 2. $\frac{5}{3}$ is a real number.
\qquad 3. -9 is a whole number.
\qquad 4. 0 is a counting number.
\qquad 5. $\sqrt{4}$ is irrational.
\qquad 6. $\sqrt{7}$ is a rational number.
\qquad 7. $\frac{10}{3}$ is a whole number.
\qquad 8. -9 is a natural number.
\qquad 9. 0 is an even integer.
\qquad 10. π is a real number.

Use the list below to write the correct term for each definition on the line provided.

additive inverses element or member negative numbers	null set (ø) or empty set positive numbers	repeating decimal terminating decimal

\qquad 1. a set with no elements or members
2. a decimal that contains a finite (limited) number of digits
3. a decimal in which one digit or a series of digits repeat endlessly
4. a number and its opposite whose sum is zero (0)
5. numbers less than zero
6. numbers greater than zero
7. one of the objects in a set

Lesson Two Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Algebra Body of Knowledge

Standard 10: Mathematical Reasoning and Problem Solving

- MA.912.A.10.1

Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guessing- and-checking, solving a simpler problem, writing an equation, working backwards, and creating a table.

- MA.912.A.10.3

Decide whether a given statement is always, sometimes, or never true (statements involving linear or quadratic expressions, equations, or inequalities, rational or radical expressions, or logarithmic or exponential functions).

The Order of Operations

Algebra can be thought of as a game. When you know the rules, you have a much better chance of winning! In addition to knowing how to add, subtract, multiply, and divide integers, fractions, and decimals, you must also use the order of operations correctly.

Although you have previously studied the rules for order of operations, here is a quick review.

Rules for Order of Operations
Always start on the left and move to the right.

1. Do operations inside grouping symbols first. () , [], or $\frac{x}{y}$
2. Then do all powers (exponents) or roots.
3. Next do multiplication or division-- or \div as they occur from left to right.
4. Finally, do addition or subtraction- + or as they occur from left to right.
(c) 2 Remember: The fraction bar is considered a grouping symbol.

$$
\text { Example: } \frac{3 x^{2}+8}{2}=\left(3 x^{2}+8\right) \div 2
$$

Note: In an expression where more than one set of grouping symbols occurs, work within the innermost set of symbols first, then work your way outward.

The order of operations makes sure everyone doing the problem correctly will get the same answer.

Some people remember these rules by using this mnemonic device to help their memory.
Please Pardon My Dear Aunt Sally*
Please Parentheses (grouping symbols)
My Dear................... Multiplication or Division
Aunt Sally............ Addition or Subtraction
*Also known as Please Excuse My Dear Aunt Sally-Parentheses, Exponents, Multiplication or Division, Addition or Subtraction.

C(I) Remember: You do multiplication or division-as they occur from left to right, and then addition or subtraction-as they occur from left to right.

Study the following.

$$
25-3 \cdot 2=
$$

There are no grouping symbols. There are no powers (exponents) or roots. We look for multiplication or division and find multiplication. We multiply. We look for addition or subtraction and find subtraction. We subtract.

$$
\begin{gathered}
25-3 \cdot 2= \\
25-6= \\
19
\end{gathered}
$$

Study the following.

$$
12 \div 3+6 \div 2=
$$

There are no grouping symbols. There are no powers or roots. We look for multiplication or division and find division. We divide. We look for addition or subtraction and find addition. We add.

$$
\begin{gathered}
12 \div 3+6 \div 2= \\
4+3= \\
7
\end{gathered}
$$

If the rules were ignored, one might divide 12 by 3 and get 4 , then add 4 and 6 to get 10 , then divide 10 by 2 to get 5 -which is the wrong answer. Agreement is needed-using the agreed-upon order of operations.

Study the following.

$$
30-3^{3}=
$$

There are no grouping symbols. We look for powers and roots and find powers, 3^{3}. We calculate this. We look for multiplication or division and find none. We look for addition or subtraction and find subtraction. We subtract.

$$
\begin{gathered}
30-3^{3}= \\
30-27= \\
3
\end{gathered}
$$

Study the following.

$$
22-\left(5+2^{4}\right)+7 \cdot 6 \div 2=
$$

We look for grouping symbols and see them. We must do what is inside the parentheses first. We find addition and a power. We do the power first and then the addition. There are no roots. We look for multiplication or division and find both. We do them

Please	Parentheses
Pardon	Powers
My	Multiplication or
Dear	Division
Aunt	Addition or
Sally	Subtraction

$$
\begin{aligned}
& 22-\left(5+2^{4}\right)+7 \cdot 6 \div 2= \\
& 22-(5+16)+7 \cdot 6 \div 2= \\
& 22-21+7 \cdot 6 \div 2= \\
& 22-21+42 \div 2= \\
& 22-21+21= \\
& 1+21= \\
& 22
\end{aligned}
$$

Adding Numbers by Using a Number Line

After reviewing the rules for order of operations, let's get a visual feel for adding integers by using a number line.

Example 1

Add $2+3$

1. Start at 2.
2. Move 3 units to the right in the positive direction.
3. Finish at 5.

So, $2+3=5$.

Example 2

Add -2 + (-3)

1. Start at -2 .
2. Move 3 units to the left in the negative direction.
3. Finish at -5 .

So, $-2+(-3)=-5$.

Add -5 + 2

1. Start at -5 .
2. Move 2 units to the right in a positive direction.
3. Finish at -3 .

So, $-5+2=-3$.

Example 4

Add $6+(-3)$

1. Start at 6 .
2. Move 3 units to the left in a negative direction.
3. Finish at 3.

So, $6+(-3)=3$.

Addition Table

Look for patterns in the Addition Table below.

Addition Table									$\longleftarrow \text { addends }$
+	4	3	2	1	0	-1	-2	-3 $\mathbf{- l}^{-4}$	
4	8	7	6	5	4	3	2	100	
3	7	6	5	4	3	2	1	0 -1	
2	6	5	4	3	2	1	$0-1$	-1	
1	5	4	3	2	1	0	-1 -2	-2 -3	
0	4	3	2	1	0	-1	-2 -3	-3 -4) sums
-1	3	2	1	0	-1	-2	-3 -4	-4 -5	(the result of adding
-2	2	1	0	-1	-2	-3	-4 -5	-5 -6	numbers together)
-3	1	0	-1	-2	-3	-4	-5 -6	-6 -7	
-4	0	-1	-2	-3	-4	-5	-6 -7	-7	

- Look at the positive sums in the table. Note the addends that result in a positive sum.
- Look at the negative sums in the table. Note the addends that result in a negative sum.
- Look at the sums that are zero. Note the addends that result in a sum of zero.
- Additive Identity Property-when zero is added to any number, the sum is the number. Note that this property is true for addition of integers.
- Commutative Property of Addition-the order in which numbers are added does not change the sum. Note that this property is true for addition of integers.
- Associative Property of Addition-the way numbers are grouped when added does not change the sum. Note that this property is true for addition of integers.

Opposites and Absolute Value

Although we can visualize the process of adding by using a number line, there are faster ways to add. To accomplish this, we must know two things: opposites or additive inverses and absolute value.

Opposites or Additives Inverses

5 and -5 are called opposites. Opposites are two numbers whose points on the number line are the same distance from 0 but in opposite directions.

Every positive integer can be paired with a negative integer. These pairs are called opposites. For example, the opposite of 4 is -4 and the opposite of -5 is 5 .

The opposite of 4 can be written -(4), so -(4) equals -4 .

$$
-(4)=-4
$$

The opposite of -5 can be written $-(-5)$, so $-(-5)$ equals 5 .

$$
-(-5)=5
$$

Two numbers are opposites or additive inverses of each other if their sum is zero.

For example: $4+-4=0$

$$
-5+5=0
$$

Absolute Value

The absolute value of a number is the distance the number is from the origin or zero (0) on a number line. The symbol \| | placed on either side of a number is used to show absolute value.

Look at the number line below. -4 and 4 are different numbers. However, they are the same distance in number of units from 0 . Both have the same absolute value of 4 . Absolute value is always positive because distance is always positive-you cannot go a negative distance. The absolute value of a number tells the number's distance from 0 , not its direction.

$$
|-4|=|4|=4 \begin{aligned}
& \text { The absolute value of a } \\
& \text { number is always positive. }
\end{aligned}
$$

However, the number 0 is neither positive nor negative. The absolute value 0 is 0 .
$|-4|$ denotes the absolute value of -4 .

$$
|-4|=4
$$

| $4 \mid$ denotes the absolute value of 4 .

$$
|4|=4
$$

The absolute value of 10 is 10 . We can use the following notation.

$$
|10|=10
$$

The absolute value of -10 is also 10 . We can use the following notation.

$$
|-10|=10
$$

Both 10 and -10 are 10 units away from the origin. So, the absolute value of both numbers is 10 .

The absolute value of 0 is 0 .

$$
|0|=0
$$

The opposite of the absolute value of a number is negative.

$$
-|8|=-8
$$

Now that we have this terminology under our belt, we can introduce two rules for adding numbers which will enable us to add quickly.

Adding Positive and Negative Integers

There are specific rules for adding positive and negative numbers.

1. If the two integers have the same sign, add their absolute values, and keep the sign.

Example
$-5+(-7)$
Think: Both integers have the same signs and the signs are negative.
Add their absolute values.
$|-5|=5$
$|-7|=7$
$5+7=12$
Keep the sign. The sign will be negative because both signs were negative. Therefore, the answer is -12 .
$-5+-7=-12$
2. If the two integers have opposite signs, subtract the absolute values. The answer has the sign of the integer with the greater absolute value.

Example

$-8+3$
Think: Signs are opposite. Subtract the absolute values.
$|-8|=8$
$|3|=3$
$8-3=5$
The sign will be negative because -8 has the greater absolute value. Therefore, the answer is -5 .
$-8+3=-5$
Example
$-6+8$
Think: Signs are opposite. Subtract the absolute values.
$|-6|=6$
$|8|=8$
$8-6=2$
The sign will be positive because 8 has a greater absolute value. Therefore, the answer is 2.
$-6+8=2$

Example

$5+(-7)$
Think: Signs are opposite. Subtract the absolute values.
$|5|=5$
$|-7|=7$
$7-5=2$
The sign will be negative because -7 has the greater absolute value. Therefore, the answer is -2 .
$5+-7=-2$

Rules for Adding Integers

- The sum of two positive integers is
$(+)+(+)=+$ positive.
- The sum of two negative integers is negative.
- The sum of a positive integer and a
negative integer takes the sign of the

The sum of a positive integer and a
negative integer takes the sign of the number with the greater absolute value.
$(-)+(-)=-$
$(-)+(+)=\}$
use sign of
$(+)+(-)=\} \begin{aligned} & \text { number } \\ & \text { greater }\end{aligned}$ absolute value

- The sum of a positive integer and a
$(a)+(-a)=0$ negative integer is zero if numbers
$(-a)+(a)=0$ have the same absolute value.

- Check Yourself Using a Calculator When Adding Positive and Negative Integers

Use a calculator with a $+/-$ sign-change key. For example, for $-16+4$, you would enter (for most calculators) $16+/-+4=$ and get the answer -12.

Subtracting Integers

In the last section, we saw that 8 plus -3 equals 5 .

$$
8+(-3)=5
$$

We know that 8 minus 3 equals 5 .

$$
8-3=5
$$

Below are similar examples.

$$
\begin{array}{ll}
10+(-7)=3 & 12+(-4)=8 \\
10-7=3 & 12-4=8
\end{array}
$$

These three examples show that there is a connection between adding and subtracting. As a matter of fact, we can make any subtraction problem into an addition problem and any addition problem into a subtraction problem.

This idea leads us to the following definition.

Definition of Subtraction
$a-b=a+(-b)$

Examples

$$
\begin{aligned}
& 8-10=8+(-10)=-2 \\
& 12-20=12+(-20)=-8 \\
& -2-3=-2+(-3)=-5
\end{aligned}
$$

Even if we have
$8-(-8)$, this becomes
8 plus the opposite of -8 , which equals 8 .

$$
\begin{aligned}
& 8+[-(-8)]= \\
& 8+8=16
\end{aligned}
$$

And
$-9-(-3)$, this becomes
-9 plus the opposite of -3 , which equals 3 .

$$
\begin{aligned}
& -9+-(-3) \\
& -9+3=-6
\end{aligned}
$$

Shortcut Two negatives become one positive!

$$
10-(-3) \text { becomes } 10 \text { plus } 3 .
$$

$$
10+3=13
$$

And

$$
-10-(-3) \text { becomes }-10 \text { plus } 3 .
$$

$$
-10+3=-7
$$

Generalization for Subtracting Integers

Subtracting an integer is the same as adding its opposite.

$$
a-b=a+(-b)
$$

$\sqrt{\text { Check Yourself Using a Calculator When Subtracting Negative }} \begin{aligned} & \text { Integers }\end{aligned}$

Use a calculator with a $+/-$ sign-change key.
For example, for 18 - (-32), you would enter $18 \boxed{-} 32+/-=$ and get the answer 50 .

Practice

Answer the following.

1. On May 22, 2004, in Ft. Worth, Texas, Annika Sorenstam became the first woman in 58 years to play on the PGA Tour. Par for the eighteen holes was 3 for four holes, 4 for twelve holes, and 5 for two holes, yielding a total par of 70 on the course. Sorenstam's scores on Day One in relation to par are provided in the table below. Determine her total for Day One.

Note: Par is the standard number of strokes a good golfer is expected to take for a certain hole on a given golf course. On this course, 70 is par. Therefore, add the total number of strokes in relation to par.

Annika Sorenstam's Golf Scores for Day One

Hole	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Total Score Relative to Par	0	0	0	0	+1	0	0	0	+1	0	0	0	-1	0	0	0	0	0

Answer: \qquad
2. Sorenstam's scores on Day One qualified her to continue to play on Day Two. However, her scores on Day Two did not qualify her to continue to play in the tournament. Sorenstam's scores in relation to par are provided in the table below. Determine her total for Day Two.

Annika Sorenstam's Golf Scores for Day Two

Hole	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Total Score Relative to Par	0		-1															

Answer: \qquad
3. When an unknown integer is added to 12 , the sum is less than -2 . Give three examples of what the unknown number might be.

Answer:

Complete the following statements.
4. a. The sum of two positive numbers is \qquad (always, sometimes, never) positive.
b. The sum of two negative numbers is \qquad (always, sometimes, never) positive.
c. The sum of a number and its opposite is \qquad (always, sometimes, never) positive.
d. The sum of a positive number and a negative number
is \qquad (always, sometimes, never) positive.
5. Complete the following statements.
a. When a positive integer is subtracted from a positive integer, the result is \qquad (always, sometimes, never) positive.
b. When a negative integer is subtracted from a negative integer, the result is \qquad (always, sometimes, never) positive.
c. When a negative integer is subtracted from a positive integer, the result is \qquad (always, sometimes, never) positive.
d. When a positive integer is subtracted from a negative integer, the result is \qquad (always, sometimes, never) positive.

Practice

Simplify the following expressions. Show essential steps.

Example: $5-(8+3)$

$$
\begin{aligned}
& 5-(8+3)= \\
& 5-\quad 11=-6
\end{aligned}
$$

1. $9-(5-2+6)$
2. $(7-3)+(-5+3)$
3. $(5+32-36)+(12+5-10)$
4. $(-26+15-13)-(4-16+43)$
5. $(-15+3-7)-(26-14+10)$

What patterns do you notice?

$$
\begin{aligned}
3(4) & =12 \\
3(-4) & =-12 \\
2 \bullet 4 & =8 \\
2 \bullet-4 & =-8 \\
1(4) & =4 \\
1(-4) & =-4 \\
0 \bullet 4 & =0 \\
0 \bullet-4 & =0 \\
-1(4) & =-4 \\
-1(-4) & =4 \\
-2 \bullet 4 & =-8 \\
-2 \bullet-4 & =8 \\
-3(4) & =-12 \\
-3(-4) & =12
\end{aligned}
$$

Ask yourself:

- What is the sign of the product of two positive integers?

$$
3(4)=12 \quad 2 \cdot 4=8 \quad \text { positive }
$$

- What is the sign of the product of two negative integers?

$$
-1(-4)=4 \quad-2 \cdot-4=8 \quad \text { positive }
$$

- What is the sign of the product of a positive integer and a negative integer or a negative integer and a positive integer?

$$
3(-4)=-12 \quad-2 \cdot 4=-8 \quad \text { negative }
$$

- What is the sign of the product of any integer and 0 ?

$$
\begin{array}{ll}
0 \bullet 4=0 & 0 \bullet-4=0
\end{array} \begin{aligned}
& \text { neither; zero is neither } \\
& \text { positive nor negative }
\end{aligned}
$$

You can see that the sign of a product depends on the signs of the numbers being multiplied. Therefore, you can use the following rules to multiply integers.

Rules for Multiplying Integers

- The product of two positive integers is positive. $\quad(+)(+)=+$
- The product of two negative integers is positive. $\quad(-)(-)=+$
- The product of two integers with different signs $\quad \begin{aligned} & (+)(-)=- \\ & (-)(+)=-\end{aligned}$ is negative.
- The product of any integer and 0 is 0 .
$(a)(0)=0$

$$
(-a)(0)=0
$$

Check Yourself Using a Calculator When Multiplying Integers

Use a calculator with a $+/-$ sign-change key.
For example, for $-13 \bullet-7$, you would enter $13+/-x 7+/=\boxed{ }=$ and get the answer 91 .

Practice	
Simplify the following. Do as many mentally as you can.	
1. 5×6	5. $3 \times(-18)$
2. $6 \times(-7)$	6. 2×4
3. -4×8	7. $-20 \times(-20)$
4. $-5 \times(-20)$	8. $-6 \times(-6)$

9. The temperature was 83 degrees at 9:00 PM and dropped an average of 1.5 degrees per hour for the next 9 hours. What was the temperature at 6:00 AM?

Answer: \qquad degrees

Dividing Integers

Think:

1. What would you multiply 6 by to get 42 ?
$6 \bullet ?=42$
Answer: 7 because $6 \bullet 7=42$
2. What would you multiply -6 by to get -54 ?
$-6 \cdot ?=-54$
Answer: 9 because $-6 \bullet 9=-54$
3. What would you multiply -15 by to get 0 ?
$-15 \cdot ?=0$
Answer: 0 because $-15 \bullet 0=0$
©(I) 3 Remember: A quotient is the result of dividing two numbers.

Example

42 divided by 7 results in a quotient of 6 .

$$
\begin{aligned}
& 42 \div 7=6 \\
& \uparrow \\
& \text { quotient }
\end{aligned}
$$

To find the quotient of 12 and 4 we write:

$$
4 \longdiv { 1 2 } \quad \text { or } \quad 12 \div 4 \quad \text { or } \quad \frac{12}{4}
$$

Each problem above is read " 12 divided by 4." In each form, the quotient is 3 .

In $\frac{12}{4}$, the bar separating 12 and 4 is called a fraction bar. Just as subtraction is the inverse of addition, division is the inverse of multiplication. This means that division can be checked by multiplication.
$4 \longdiv { 1 2 } \quad$ because $\quad 3 \cdot 4=12$
Division of integers is related to multiplication of integers. The sign rules for division can be discovered by writing a related multiplication problem.

For example,

$$
\begin{array}{ll}
\frac{6}{2}=3 \text { because } 3 \cdot 2=6 & \frac{-6}{2}=-3 \text { because }-3 \cdot 2=-6 \\
\frac{-6}{-2}=3 \text { because } 3 \cdot-2=-6 & \frac{6}{-2}=-3 \text { because }-3 \cdot-2=6
\end{array}
$$

Below are the rules used to divide integers.

> | > { Rules for Dividing Integers } | |
| :--- | :---: |
| > $\begin{array}{ll}\text { - The quotient of two positive integers is positive. } & (+) \div(+)=+ \\ > \text { - The quotient of two negative integers is positive. } & (-) \div(-)=+ \\ \text { - The quotient of two integers with different signs } & (+) \div(-)=- \\ > \text { is negative. } & (-) \div(+)=- \\ > \text { - The quotient of } 0 \text { divided by any nonzero integer } & 0 \div a=0 \\ > \text { is } 0 \text {. } & \end{array}$ | |

Note the special division properties of 0 .

$$
\begin{array}{ll}
0 \div 9=0 & 0 \div-9=0 \\
\frac{0}{5}=0 & \frac{0}{-5}=0 \\
0 & - 1 5 \longdiv { 0 }
\end{array}
$$

(c) Remember: Division by 0 is undefined. The quotient of any number and 0 is not a number.

We say that $\frac{9}{0}, \frac{5}{0}, \frac{15}{0}, \frac{-9}{0}, \frac{-5}{0}$, and $\frac{-15}{0}$ are undefined.
Likewise, $\frac{0}{0}$ is undefined.

For example, try to divide 134 by 0 . To divide, think of the related multiplication problem.

$$
? \times 0=134
$$

Any number times 0 is 0 -so mathematicians say that division by 0 is undefined.

Note: On most calculators, if you divide by 0 , you will get an error indicator.

Check Yourself Using a Calculator When Dividing Integers

Use a calculator with a $+/-$ sign-change key.
For example, for $\frac{-54}{9}$, you would enter $54+/-\boxed{\div} 9=$ and get the answer -6 .

Practice

Simplify the following. Do as many mentally as you can.

1. $35 \div 5$
2. $-400 \div 25$
3. $49 \div(-7)$
4. $-625 \div(-25)$
5. $225 \div(-15)$
6. $1,000 \div(-10)$
7. $-121 \div 11$
8. $-1,000 \div 100$
9. $169 \div(-13)$
10. $-10,000 \div(-100)$
11. The temperature of 69 degrees dropped to 44 degrees at an average rate of 6.25 degrees per hour. How many hours did the total drop of 25 degrees require?

Answer: \qquad hours

Practice

Simplify the following. Show essential steps.

$$
\text { Example: } \begin{aligned}
& \frac{2(-3 \bullet 6)}{-4} \\
& \frac{2(-3 \bullet 6)}{-4}= \\
& \frac{2(-18)}{-4}= \\
& \frac{-36}{-4}=
\end{aligned}
$$

$$
9
$$

1. $\frac{(6)(-5)(3)}{9}$
2. $(-3)(5)\left(\frac{4}{3}\right)(-2)$
3. $\left(\frac{1}{2}\right)(-4)(0)(5)$
4. $\frac{-3(4)(-2)(5)}{(-16)}$
5. $\frac{6\left(\frac{4}{7}\right)\left(-\frac{3}{2}\right)(-2)}{-\left(\frac{3}{7}\right)}$
6. $\left[\frac{7-(-3)}{5-3}\right]\left[\frac{4+(-8)}{3-5}\right]$
7. $\left[\frac{12+(-2)}{3+(-8)}\right]\left[\frac{6+(-15)}{8-5}\right]$
8. $\frac{3(3+2)-3 \cdot 3+2}{3 \cdot 2+2(2-1)}$

Practice

Use the given value of each variable to evaluate each expression. Show essential steps.

Example: Evaluate $5\left(\frac{F-32}{9}\right)$

$$
F=212
$$

Replace F with 212 and simplify.

$$
\begin{aligned}
5\left(\frac{212-32}{9}\right) & = \\
5\left(\frac{180}{9}\right) & =
\end{aligned}
$$

$$
5(20)=
$$

100

1. $E=18 \quad e=2 \quad R=6$

$$
\frac{E-e}{R}
$$

2. $P=1,000 \quad r=0.04 \quad t=5$

$$
P+P r t
$$

3. $r=8 \quad h=6$

$$
2 r(r+h)
$$

Practice

Simplify the following. Show essential steps.

Example: $(4+1)^{2}-\frac{4 \cdot 3^{2}}{6}$

$$
\begin{array}{r}
(4+1)^{2}-\frac{4 \cdot 3^{2}}{6}= \\
5^{2}-\frac{4 \cdot 9}{6}= \\
25-\frac{36}{6}= \\
25-\frac{6}{6}= \\
19
\end{array}=
$$

1. $\frac{8 \cdot 2^{2}}{4^{2}}+(3 \cdot 1)^{2}$
2. $\frac{5^{2} \cdot 3^{2}}{4}-(2+1)^{2}$
3. $\frac{3^{2} \cdot 2^{2}}{7-2^{2}}+\frac{(-3)(2)^{2}}{6-3}$
4. $\frac{(-5)^{2}-3^{2}}{4-6}+\frac{-(3)^{2} \cdot 2}{5+1}$

Use the given value of each variable to evaluate the following expressions. Show essential steps.

$$
x=3 \quad y=-2
$$

6. $\frac{-x y^{2}}{6}+2 x^{2} y$

$$
\text { 7. }(x+y)^{2}+(x-y)^{2}
$$

Lesson Three Purpose

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Standard 10: Mathematical Reasoning and Problem Solving

- MA.912.A.10.3

Decide whether a given statement is always, sometimes, or never true (statements involving linear or quadratic expressions, equations, or inequalities, rational or radical expressions, or logarithmic or exponential functions).

Algebraic Expressions

A mathematical expression with a letter in it is called an algebraic expression. The letter represents an unknown or mystery number. The letter used can be any letter in the alphabet.

For example: $7 n$ means 7 times some number, n.
We use algebraic expressions to help us solve equations. Before we can use them, we must be able to translate them. Look at the following expressions translated into algebraic expressions.

- eight more than a number is expressed as
\qquad
$r+8$
- sixteen less than a number is written as

$$
y-16
$$

- the product of a number and 12 looks like
\square
- the difference between 19 and e is written as

$$
19-e
$$

- 4 less than 6 times a number means

6d-4

- the quotient of 18 and a number is
$18 \div y$ or $\frac{18}{y}$
- four cubed is written as
\qquad
- three squared is written as
3^{2}

Practice

Translate the following expressions into algebraic expressions.

1. four times a number
\qquad
2. a number times four
\qquad
3. eleven more than a number
\qquad
4. eleven increased by a number
\qquad
5. the quotient of 15 and a number
\qquad
6. the quotient of a number and 15
\qquad
7. seven squared
\qquad
8. eight cubed
\qquad
9. three more than twice a number
\qquad
10. twice a number less three
11. three less than twice a number
12. twice the sum of a number and 21
13. one-half the square of a number
\qquad
14. 22 increased by 4 times the square of a number

Practice

Translate the following algebraic expressions into words.

1. $6 y$
\qquad
2. $c-5$
3. $5-c$
4. $s+21$
\qquad
5. $21+s$
\qquad
6. $10 r^{2}$
\qquad
7. $3 d+7$
\qquad
8. $8 x-11$
\qquad
9. $6(v+9)$
10. $\frac{1}{2}\left(5+x^{3}\right)$

Lesson Four Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Algebra Body of Knowledge

Standard 10: Mathematical Reasoning and Problem Solving

- MA.912.A.10.1

Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guessing- and-checking, solving a simpler problem, writing an equation, working backwards, and creating a table.

Working with Absolute Value

As discussed earlier in this unit, the absolute value of a number is actually the distance that number is from zero on a number line. Because distance is always positive, the result when taking the absolute value of a number is always positive.

The symbols for absolute value | | can also act as grouping symbols. Perform any operations within the grouping symbols first, just as you would within parentheses.

Look at these examples. Notice the digits are the same in each pair, but the answers are different due to the placement of the absolute value marks.

$$
\begin{array}{ll}
|-7|+|5|=7+5=12 & |6|-|-10|=6-10=-4 \\
|-7+5|=|-2|=2 &
\end{array}|6--10|=|6+10|=|16|=16
$$

Answer the following. Perform any operations within the grouping symbols first.

1. $|-23+37|$
2. $|21-44|$
3. $|16+4|-|32|$
4. $|16+4|-|-32|$
5. $22-|-10|+|56|$
$\sqrt{ }$ Check yourself: The sum of the answers from numbers 1-5 is |-81|.

Practice

Use the given value for each variable to evaluate the following expressions. Perform any operations within the grouping symbols first.

$$
a=-5 \quad b=7 \quad c=-9
$$

1. $|a|+|b|-|c|$
2. $|a+b|-|c|$
3. $|c-a|-|b|$
4. $|b+c|+|a|$
5. $|c-b|+|a|$

Use the given value for each variable to evaluate the following expressions. Perform any operations within the grouping symbols first.

$$
a=-5 \quad b=7 \quad c=-9
$$

6. $|a+c|-|-c|$
7. $|a+b+c|-|c-b|$
8. $|a|+|b|+|c|$
9. $a-|b|-|c|$
10. $a+|-b|-|c|$

Practice

Use the given value for each variable to evaluate the following expressions. Perform any operations within the grouping symbols first.

$$
a=6 \quad b=-7 \quad c=-8
$$

1. $|a|+|b|-|c|$
2. $|a+b|-|c|$
3. $|c-a|-|b|$
4. $|a+b+c|-|c-b|$
5. $|a|+|b|+|c|$
6. $a-|b|-|c|$
7. $a+|-b|-|c|$

Answer the following. Perform any operations within the grouping symbols first.
8. $|-33+57|$
9. $|16-34|$
10. $|26+4|-|36|$
11. $|26+4|-|-36|$
12. $22-|20|+|32|$

Practice

Use the list below to complete the following statements.

element or member even	irrational grouping symbols	finite
odd	rational	
real numbers		
variable		

1. The color green is $a(n)$ \qquad of the set of colors in the rainbow.
2. $\mathrm{A}(\mathrm{n})$ \qquad a real number that cannot be expressed as a ratio of two integers.
3. \{ \} and [] are examples of \qquad .
4. Rational numbers and irrational numbers together make up the set of
\qquad
5. Any symbol, usually a letter, which could represent a number in a mathematical expression is a \qquad .
6. A \qquad is a number can be expressed as a ratio $\frac{a}{b}$, where a and b are integers and $b \neq 0$.
7. Any integer not divisible by 2 is called a(n) \qquad integer.
8. Any integer divisible by 2 is called a(n) \qquad integer.
9. A set that has bounds and is limited and a whole number can represent its number of elements is a \qquad set.

Specify the following sets by listing the elements of each.

1. $\{$ whole numbers less than 8$\}$ \qquad
2. \{odd counting numbers less than 12$\}$ \qquad
3. \{even integers between -5 and 6$\}$ \qquad

Write finite if the set has bounds and is limited. Write infinite if the set has no boundaries and is not limited.
\qquad 4. \{the colors in a crayon box\}
5. \{rational numbers\}
6. \{negative integers\}

Write True if the statement is correct. Write False if the statement is not correct.
\qquad 7. π is rational.
\qquad 8. 0 is a whole number.
\qquad 9. $\quad-9$ is a counting number.

Complete the following statements.
10. The sum of a positive number and a negative number
is \qquad (always, sometimes, never) positive.
11. The difference between a negative number and its opposite is
\qquad (always, sometimes, never) zero.

Simplify the following. Show essential steps.
(cr 3 Remember: Order of operations-Please Pardon My Dear Aunt Sally. (Also known as Please Excuse My Dear Aunt Sally.)
12. $\frac{(5)(-2)(7)}{10}$
13. $\frac{(-6)(4)-(8)(2)}{9-4}$
14. $\left[\frac{16-(-4)}{10-6}\right]\left[\frac{19+(-8)}{(-2)(3)}\right]$

Use the given value of each variable to evaluate each expression. Show essential steps.
15.
$P=100 \quad r=0.02 \quad t=6$

Prt
16.

$r=6$	$h=8$

$2 r(r+h)$
17. $x=-2 \quad y=3$

$$
\frac{-x y^{2}}{6}+2 x y^{2}
$$

Simplify the following. Show essential steps.
18. $\frac{5^{2}+\left(2^{2}-1\right)^{3}}{3^{2}-5}$
19. $\frac{3^{2} \cdot 2(4)}{3^{2}-2^{2}+1}+\frac{5^{2}+7}{2^{3}}$

Translate the following expressions into algebraic expressions.

20. eight more than a number
21. 16 less than 2 times a number
\qquad
22. four more than the sum of 13 and the square of a number
\qquad

Translate the following algebraic expressions into words.
23. $8 c-5$
24. $4\left(x^{3}+7\right)$
25. $13(x+9)$

Answer the following. Perform any operations within the grouping symbols first.
26. $|13-24|$
27. $|-19+17|-|41+8|$
28. $36-|14-10|+|3-15|$

Use the given value for each variable to evaluate the following expressions. Perform any operations within the grouping symbols first. Show essential steps.

$$
a=-6 \quad b=-2 \quad c=4
$$

29. $|a+b|-|c-a|$
30. $|b+c|+|-a-b|$

Unit 2: Algebraic Thinking

This unit emphasizes strategies used to solve equations and understand and solve inequalities.

Unit Focus

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.1

Solve linear equations in one variable that include simplifying algebraic expressions.

- MA.912.A.3.2

Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality.

- MA.912.A.3.3

Solve literal equations for a specified variable.

- MA.912.A.3.4

Solve and graph simple and compound inequalities in one variable and be able to justify each step in a solution.

Standard 10: Mathematical Reasoning and Problem Solving

- MA.912.A.10.1

Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guessing- and-checking, solving a simpler problem, writing an equation, working backwards, and creating a table.

Vocabulary

Use the vocabulary words and definitions below as a reference for this unit.
additive identity \qquad the number zero (0); when zero (0) is added to another number the sum is the number itself Example: $5+0=5$
additive inverses \qquad a number and its opposite whose sum is zero (0); also called opposites

Example: In the equation $3+(-3)=0$, the additive inverses are 3 and -3 .
angle (\angle) \qquad two rays extending from a common endpoint called the vertex; measures of angles are described in degrees $\left(^{\circ}\right.$)

area (A) \qquad the measure, in square units, of the inside region of a closed two-dimensional figure; the number of square units needed to cover a surface
Example: A rectangle with sides of 4 units by 6 units has an area of 24 square units.
associative property \qquad the way in which three or more numbers are grouped for addition or multiplication does not change their sum or product, respectively Examples: $(5+6)+9=5+(6+9)$ or $(2 \times 3) \times 8=2 \times(3 \times 8)$
commutative propertythe order in which any two numbers are added or multiplied does not change their sum or product, respectively
Examples: $2+3=3+2$ or
$4 \times 7=7 \times 4$
 Example: $\frac{3}{4}, 0.75$, and 75%
even integer \qquad any integer divisible by 2 ; any integer with the digit $0,2,4,6$, or 8 in the units place; any integer in the set $\{\ldots,-4,-2,0,2,4, \ldots\}$

expression	...a mathematical phrase or part of a number sentence that combines numbers, operation signs, and sometimes variables Examples: $4 r^{2} ; 3 x+2 y$; An expression does not contain equal ($=$) or inequality $(<,>, \leq, \geq$, or $\neq)$ signs.
formula	...a way of expressing a relationship using variables or symbols that represent numbers
graph of a number	the point on a number line paired with the number
increase	to make greater
inequality	a sentence that states one expression is greater than $(>)$, greater than or equal to (\geq), less than $(<)$, less than or equal to (\leq), or not equal to (\neq) another expression Examples: $a \neq 5$ or $x<7$ or $2 y+3 \geq 11$
integers	the numbers in the set $\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$
inverse operation	an action that undoes a previously applied action Example: Subtraction is the inverse operation of addition.
irrational number	...a real number that cannot be expressed as a ratio of two integers Example: $\sqrt{2}$
length (l)a one-dimensional measure that is the measurable property of line segments

like terms \qquad terms that have the same variables and the same corresponding exponents Example: In $5 x^{2}+3 x^{2}+6$, the like terms are $5 x^{2}$ and $3 x^{2}$.
measure (m)
of an angle (\angle) \qquad the number of degrees $\left({ }^{\circ}\right)$ of an angle
multiplicative identitythe number one (1); the product of a number and the multiplicative identity is the number itself Example: $5 \times 1=5$
multiplicative inverse any two numbers with a product of 1 ; also called reciprocals
Example: 4 and $\frac{1}{4}$; zero (0) has no multiplicative inverse
multiplicative
property of -1 \qquad the product of any number and -1 is the opposite or additive inverse of the number Example: $-1(a)=-a$ and $a(-1)=-a$
multiplicative
property of zero \qquad for any number $a, a \bullet 0=0$ and $0 \bullet a=0$
negative numbers \qquad numbers less than zero
number line \qquad a line on which numbers can be written or visualized

odd integer \qquad any integer not divisible by 2 ; any integer with the digit $1,3,5,7$, or 9 in the units place; any integer in the set $\{\ldots,-5,-3,-1,1,3,5, \ldots\}$
order of operations the order of performing computations in parentheses first, then exponents or powers, followed by multiplication and / or division (as read from left to right), then addition and / or subtraction (as read from left to right); also called algebraic order of operations Example: $5+(12-2) \div 2-3 \times 2=$

$$
5+10 \div 2-3 \times 2=
$$

$$
5+5-6=
$$

$$
10-6=
$$

4
perimeter (P)the distance around a figure
positive numbers \qquad numbers greater than zero
power (of a number) \qquad an exponent; the number that tells how many times a number is used as a factor Example: In $2^{3}, 3$ is the power.
product \qquad the result of multiplying numbers together Example: In $6 \times 8=48$, the product is 48 .
quotient \qquad the result of dividing two numbers Example: In $42 \div 7=6$, the quotient is 6 .
ratio \qquad the comparison of two quantities Example: The ratio of a and b is $a: b$ or $\frac{a}{b}$, where $b \neq 0$.
rational number \qquad a number that can be expressed as a ratio $\frac{a}{b}$, where a and b are integers and $b \neq 0$
real numbers \qquad the set of all rational and irrational numbers
reciprocals \qquad any two numbers with a product of 1 ; also called multiplicative inverse Examples: 4 and $\frac{1}{4}$ are reciprocals because $\frac{4}{1} \times \frac{1}{4}=1 ; \frac{3}{4}$ and $\frac{4}{3}$ are reciprocals because $\frac{3}{4} \times \frac{4}{3}=1$; zero (0) has no multiplicative inverse
rectangle \qquad a parallelogram with four right angles

side \qquad the edge of a polygon, the face of a polyhedron, or one of the rays that make up an angle
Example: A triangle has three sides.

simplify an expression
to perform as many of the indicated operations as possible
solution \qquad any value for a variable that makes an equation or inequality a true statement Example: In $y=8+9$
$y=17 \quad 17$ is the solution.
solve \qquad to find all numbers that make an equation or inequality true
square \qquad a rectangle with four sides the same length

square (of a number) \qquad the result when a number is multiplied by itself or used as a factor twice Example: 25 is the square of 5 .
\qquad units for measuring area; the measure of the amount of an area that covers a surface
substitute \qquad to replace a variable with a numeral Example: $8(a)+3$

$$
8(5)+3
$$

substitution property

of equality \qquad for any numbers a and b, if $a=b$, then a may be replaced by b
sum \qquad the result of adding numbers together Example: In $6+8=14$, the sum is 14 .
symmetric property
of equality
for any numbers a and b, if $a=b$, then
$b=a$
table (or chart) \qquad a data display that organizes information about a topic into categories
triangle \qquad a polygon with three sides

variable \qquad any symbol, usually a letter, which could represent a number
width (w) \qquad a one-dimensional measure of something side to side

Unit 2: Algebraic Thinking

Introduction

Algebraic thinking provides tools for looking at situations. You can state, simplify, and show relationships through algebraic thinking. When combining algebraic symbols with algebraic thinking, you can record information or ideas and gain insights into solving problems.

In this lesson you will use what you have learned to solve equations and inequalities on a more advanced level.

Lesson One Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.1

Solve linear equations in one variable that include simplifying algebraic expressions.

- MA.912.A.3.2

Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality.

- MA.912.A.3.4

Solve and graph simple and compound inequalities in one variable and be able to justify each step in a solution.

Standard 10: Mathematical Reasoning and Problem Solving

- MA.912.A.10.1

Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guessing- and-checking, solving a simpler problem, writing an equation, working backwards, and creating a table.

Solving Equations

A mathematical sentence that contains an equal sign (=) is called an equation. An equation is a mathematical sentence stating that the two expressions have the same value. An expression is a mathematical phrase, or part of a number sentence that contains numbers, operation signs, and sometimes variables.

We also learned the rules to add and subtract and to multiply and divide positive numbers and negative numbers.

Rules for Adding and Subtracting Positive and Negative Integers							
$(+)$	+	$(+)$	$=$	+	$(+)$	-	$(+)$
=	positive if first number is greater, otherwise it is						
negative							

Rules for Multiplying and Dividing Positive and Negative Integers									
(+)	-	(+)	$=$	+	(+)	\div	(+)	$=$	+
(-)	\bullet	(-)	$=$	+	(-)	\div	(-)	$=$	+
(+)	-	(-)	=	-	(+)	\div	(-)	=	-
(-)	-	(+)	$=$	-	(-)	\div	(+)	$=$	-

To solve the equation is to find the number that we can substitute for the variable to make the equation true.

Study these examples. Each equation has been solved and then checked by substituting the answer for the variable in the original equation. If the answer makes the equation a true sentence, it is called the solution of the equation.

Solve:

$$
\begin{aligned}
n+14 & =-2 \\
n+14-14 & =-2-14 \\
n & =-2+-14 \\
n & =-16
\end{aligned}
$$

Check:

$$
\begin{aligned}
n+14 & =-2 \\
-16+14 & =-2 \\
-2 & =-2 \quad \text { It checks! }
\end{aligned}
$$

Solve:

$$
\begin{aligned}
y-(-6) & =2 \\
y+6-6 & =2-6 \\
y & =2+-6 \\
y & =-4
\end{aligned}
$$

Check:

$$
\begin{aligned}
y-(-6) & =2 \\
-4-(-6) & =2 \\
-4+6 & =2 \\
2 & =2 \quad \text { It checks! }
\end{aligned}
$$

Solve:

$$
\begin{aligned}
-6 x & =-66 \\
\frac{-6 x}{-6} & =\frac{-66}{-6} \\
x & =11
\end{aligned}
$$

Check:

$$
\begin{aligned}
-6 x & =-66 \\
-6(11) & =-66 \\
-66 & =-66 \text { It checks! }
\end{aligned}
$$

Solve:

$$
\begin{aligned}
\frac{y}{-10} & =5 \\
(-10) \frac{y}{-10} & =5(-10) \\
y & =-50
\end{aligned}
$$

Check:

$$
\begin{aligned}
\frac{y}{-10} & =5 \\
\frac{-50}{-10} & =5 \\
5 & =5 \text { It checks! }
\end{aligned}
$$

Practice

Solve each equation and check. Show essential steps.

1. $y+12=2$
2. $a-(-2)=2$
3. $r+15=-25$
4. $0=y+-46$
5. $15 y=-30$
6. $\frac{y}{15}=-2$
7. $\frac{x}{5}=-9$
8. $-9 y=270$
9. $m-9=-8$
10. $3+x=-3$
11. $\frac{n}{-5}=-2$
12. $-55=-5 a$
13. $12=-6+x$
14. $t-20=-15$

Interpreting Words and Phrases

Words and phrases can suggest relationships between numbers and mathematical operations. In Unit 1 we learned how words and phrases can be translated into mathematical expressions. Appendix B also contains a list of mathematical symbols and their meanings.

Relationships between numbers can be indicated by words such as consecutive, preceding, before, and next. Also, the same mathematical expression can be used to translate many different word expressions.

Below are some of the words and phrases we associate with the four mathematical operations and with powers of a number.

Mathematical Symbols and Words

+	\boldsymbol{c}	\mathbf{x}	\div	power
add	subtract	multiply	divide	power
sum	difference	product	quotient	square
plus	minus	times		cube
total	remainder	of		
more than	less than	twice		
increased by	decreased by	doubled		

Practice

Write an equation and solve the problem.

Example: Sixteen less than a number n is 48 . What is the number?
(c) Remember: The word is means is equal to and translates to an $=$ sign.

Note: To write 16 less than n, you write $n-16$.

So $64-16=48$ or 16 less than 64 is 48 .

1. A number increased by 9 equals -7 . What is the number? (Let $d=$ the number).
2. A number times -12 equals -72 . What is the number? (Let $x=$ the number.)
3. A number decreased by 5 equals -9 . What is the number? (Let $y=$ the number.)
4. A number divided by 7 equals -25 . What is the number? (Let $n=$ the number.)
5. In a card game, Ann made 30 points on her first hand. After the second hand, her total score was 20 points. What was her score on the second hand?

6. A scuba diver is at the -30 foot level. How many feet will she have to rise to be at the -20 foot level?

Solving Two-Step Equations

When solving an equation, you want to get the variable by itself on one side of the equal sign. You do this by undoing all the operations that were done on the variable. In general, undo the addition or subtraction first. Then undo the multiplication or division.

Study the following examples.
A. Solve:

$$
\begin{aligned}
2 y+2 & =30 \\
2 y+2-2 & =30-2 \longleftarrow \text { subtract } 2 \text { from each side } \\
\frac{2 y}{2} & =\frac{28}{2} \\
y & =14
\end{aligned}
$$

Check:

$$
\begin{aligned}
2 y+2 & =30 & & \\
2(14)+2 & =30 & \leftarrow & \text { replace } y \text { with } 14 \\
28+2 & =30 & & \\
30 & =30 & & \text { It checks! }
\end{aligned}
$$

B. Solve:

$$
\begin{aligned}
2 x-7 & =-29 \\
2 x-7+7 & =-29+7 \longleftarrow \text { add } 7 \text { to each side } \\
\frac{2 x}{2} & =\frac{-22}{2} \quad \text { divide each side by } 2 \\
x & =-11
\end{aligned}
$$

Check:

$$
\begin{array}{rlr}
2 x-7 & =-29 & \\
2(-11)-7 & =-29 & \text { replace } x \text { with }-11 \\
-22-7 & =-29 & \\
-29 & =-29 &
\end{array}
$$

C. Solve:

$$
\begin{array}{rlrl}
\frac{n}{7}+18 & =20 \\
\frac{n}{7}+18-18 & =20-18 & \longleftarrow & \text { subtract } 18 \text { from each side } \\
(7) \frac{n}{7} & =2(7) \quad \longleftarrow \text { multiply each side by } 7 \\
n & =14 \quad \longleftarrow \text { simplify both sides }
\end{array}
$$

Check:

$$
\begin{array}{rlr}
\frac{n}{7}+18 & =20 & \\
\frac{14}{7}+18 & =20 & \longleftarrow \\
2+18 & =20 & \\
20 & =20 & \\
\text { replace } n \text { with } 14 \\
\text { It checks! }
\end{array}
$$

D. Solve:

$$
\begin{array}{rlrl}
\frac{t}{-2}+4 & =-10 & \\
\frac{t}{-2}+4-4 & =-10-4 & \longleftarrow & \text { subtract } 4 \text { from each side } \\
\frac{(-2) t}{-2} & =-14(-2) & \longleftarrow \text { multiply each side by }-2 \\
t & =28 & \longleftarrow & \text { simplify both sides }
\end{array}
$$

Check:

$$
\begin{array}{rlr}
\frac{t}{-2}+4 & =-10 & \\
\frac{28}{-2}+4 & =-10 & \text { replace } t \text { with } 28 \\
-14+4 & =-10 & \\
-10 & =-10 & \text { It checks! }
\end{array}
$$

Practice

Solve each equation and check. Show essential steps.

1. $4 x+8=16$
2. $4 y-6=10$
3. $5 n+3=-17$
4. $2 y-6=-18$
5. $-8 y-21=75$
6. $\frac{a}{8}-17=13$
7. $13+\frac{x}{-3}=-4$
8. $\frac{n}{8}+1=4$
9. $-3 b+5=20$
10. $6=\frac{x}{4}-14$
11. $-7 y+9=-47$
12. $\frac{n}{-6}-17=-8$

Use the list below to decide which equation to use to solve each problem. Then solve the problem.

13. Two more than the product of 4 and Ann's age is 10 .

Equation: \qquad

How old is Ann? $n=$ \qquad
14. If you multiply Sean's age by 4 and then subtract 2, you get 10 .

Equation: \qquad

What is Sean's age? $n=$ \qquad
15. If you divide Joe's age by 4 and then add 2 , you get 10 .

Equation: \qquad

What is Joe's age? $n=$ \qquad
16. Divide Jenny's age by 4 , then subtract 2 , and get 10 .

Equation: \qquad

What is Jenny's age $? n=$ \qquad

Circle the letter of the correct answer.
17. The sentence that means the same as the equation
$\frac{1}{3} y+8=45$ is \qquad .
a. Eight more than one-third of y is 45 .
b. One-third of y is eight more than 45 .
c. y is eight less than one-third of 45 .
d. y is eight more than one-third of 45 .

Special Cases

Reciprocals: Two Numbers Whose Product is 1

Note: $5 \cdot \frac{1}{5}=1$ and $\frac{5}{5}=1$
When you multiply 5 by $\frac{1}{5}$ and divide 5 by 5 , both equations yield 1 .
We see that 5 is the reciprocal of $\frac{1}{5}$ and $\frac{1}{5}$ is the reciprocal of 5 . Every number but zero has a reciprocal. (Division by zero is undefined.) Two numbers are reciprocals if their product is 1.

Below are some examples of numbers and their reciprocals.

Number	Reciprocal
$-\frac{1}{4}$	-4
1	1
$\frac{-2}{3}$	$\frac{-3}{2}$
$\frac{7}{8}$	$\frac{8}{7}$
-2	$-\frac{1}{2}$
$\frac{1}{7}$	7
x	$\frac{1}{x}$

Multiplication Property of Reciprocals
any nonzero number times its reciprocal is 1

$$
\begin{gathered}
x \cdot \frac{1}{x}=1 \\
\text { If } x \neq 0
\end{gathered}
$$

Remember: When two numbers are reciprocals of each other, they are also called multiplicative inverses of each other.

Study the following two examples.

Method 1: Division Method

$$
\begin{aligned}
5 x-6 & =9 \\
5 x-6+6 & =9+6 \\
5 x & =15 \\
\frac{5 x}{5} & =\frac{15}{5} \\
x & =3
\end{aligned}
$$

Method 2: Reciprocal Method

$$
\begin{aligned}
5 x-6 & =9 \\
5 x-6+6 & =9+6 \\
5 x & =15 \\
\frac{1}{5} \cdot 5 x & \frac{1}{5} \cdot 15 \\
x & =3
\end{aligned}
$$

Both methods work well. However, the reciprocal method is probably easier in the next two examples, which have fractions.

$$
\begin{aligned}
-\frac{1}{5} x-1 & =9 \\
-\frac{1}{5} x-1+1 & =9+1 \\
-\frac{1}{5} x & =10 \\
-5 \bullet-\frac{1}{5} x & =-5 \bullet 10 \longleftarrow \text { multiply by reciprocal of }-\frac{1}{5} \text { which is }-5 \\
x & =-50
\end{aligned}
$$

Here is another equation with fractions.

$$
\begin{aligned}
-\frac{3}{4} x+12 & =36 \\
-\frac{3}{4} x+12-12 & =36-12 \\
-\frac{3}{4} x & =24 \\
-\frac{4}{3} \bullet-\frac{3}{4} x & =-\frac{4}{3} \bullet 24 \\
1 \bullet x & =-32 \\
x & =-32
\end{aligned}
$$

Multiplying by $\mathbf{- 1}$

Here is another equation which sometimes gives people trouble.
$5-x=-10$
(c) Remember: $5-x$ is not the same thing as $x-5$. To solve this equation we need to make the following observation.
Property of Multiplying by -1
-1 times a number equals the opposite of that number
$-1 \cdot x=-x$

This property is also called the multiplicative property of $\mathbf{- 1}$, which says the product of any number and - 1 is the opposite or additive inverse of the number.

See the following examples.
$-1 \cdot 5=-5$
$-1 \cdot(-6)=6$

Now let's go back to $5-x=-10$ using the property of multiplying by -1 . We can rewrite the equation as follows.

$$
\begin{aligned}
5-1 x & =-10 & & \\
5-1 x-5 & =-10-5 & & \text { subtract } 5 \text { from both sides to } \\
-1 x & =-15 & & \text { isolate the variable } \\
\frac{-1 x}{-1} & =\frac{-15}{-1} & & \\
x & =15 & &
\end{aligned}
$$

This example requires great care with the positive numbers and negative signs.

$$
\begin{aligned}
11-\frac{1}{9} x & =-45 & & \\
11-\frac{1}{9} x-\mathbf{1 1} & =-45-11 & & \text { subtract } 11 \text { from both sides } \\
-\frac{1}{9} x & =-56 & & \text { to isolate the variable } \\
-9 \bullet-\frac{1}{9} x & =-9 \bullet-56 & & \text { multiply by reciprocal of }-\frac{1}{9} \text { which is }-9 \\
x & =504 & &
\end{aligned}
$$

Consider the following example.
(c) Remember: Decreased by means subtract, product means multiply, and is translates to the $=$ sign.

Five decreased by the product of 7 and x is -6 . Solve for x.
Five decreased by the product of 7 and x is -6 .

Practice

Write the reciprocals of the following. If none exist, write none.

1. 10
2. -6
3. $\frac{5}{6}$
4. $-\frac{9}{10}$
5. 0

Solve the following. Show essential steps.
6. $\frac{1}{5} x+3=9$
7. $\frac{1}{4} x-7=2$
9. $10-6 x=11$
10. $15-x=10$
8. $-\frac{1}{2} x-7=23$
11. $\frac{1}{8} x+4=-6$
15. The difference between 12 and $2 x$ is -8 . Solve for x.

Practice

Match each definition with the correct term. Write the letter on the line provided.
\qquad 1. to find all numbers that make an equation or inequality true
2. numbers less than zero
3. a mathematical phrase or part of a number sentence that combines numbers, operation signs, and sometimes variables
\qquad 4. any value for a variable that makes an equation or inequality a true statement
5. any symbol, usually a letter, which could represent a number
6. to replace a variable with a numeral
\qquad 7. a mathematical sentence stating that the two expressions have the same value
8. numbers greater than zero

9. any two numbers with a product of 1 ;

 also called multiplicative inverseG. solve
H. substitute
A. equation
B. expression
C. negative numbers
D. positive numbers
E. reciprocals
F. solution
I. variable

Use the list below to write the correct term for each definition on the line provided.

additive inverses	multiplicative inverses
decrease	multiplicative property of $\mathbf{- 1}$
difference	product
increase	

additive inverses multiplicative inverses decrease multiplicative property of $\mathbf{- 1}$ product increase

1. any two numbers with a product of 1 ; also called reciprocals
2. the result of multiplying numbers together
3. to make greater
4. to make less
5. the product of any number and -1 is the opposite or additive inverse of the number
6. a number that is the result of subtraction
7. a number and its opposite whose sum is zero (0); also called opposites

Lesson Two Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.1

Solve linear equations in one variable that include simplifying algebraic expressions.

- MA.912.A.3.2

Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality.

- MA.912.A.3.4

Solve and graph simple and compound inequalities in one variable and be able to justify each step in a solution.

Standard 10: Mathematical Reasoning and Problem Solving

- MA.912.A.10.1

Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guessing- and-checking, solving a simpler problem, writing an equation, working backwards, and creating a table.

The Distributive Property

Consider $4(2+6)$. The rules for order of operations would have us add inside the parentheses first.

$$
\begin{array}{cl}
4(2+6) & = \\
4(8) & = \\
32 &
\end{array}
$$

(Cl) Remember: Rules for the order of operations

Always start on the left and move to the right.

1. Do operations inside grouping symbols first.
2. Then do all powers (exponents) or roots.
3. Next do multiplication or division-as they occur from left to right.
4. Finally, do addition or subtraction-as they occur from left to right.

However, there is a second way to do the problem.

$$
\begin{gathered}
4(2+6)= \\
4(2)+4(6)= \\
8+24= \\
32
\end{gathered}
$$

In the second way, the 4 is distributed over the addition. This second way of doing the problem illustrates the distributive property.

The Distributive Property

For any numbers a, b, and c, $a(b+c)=a b+a c$

Also, it works for subtraction: $a(b-c)=a b-a c$

This property is most useful in simplifying expressions that contain variables, such as $2(x+4)$.

To simplify an expression we must perform as many of the indicated operations as possible. However, in the expression $2(x+4)$, we can't add first, unless we know what number x represents. The distributive property allows us to rewrite the equation:

$$
\begin{aligned}
& 2(x+4)= \\
& 2 x+2(4)= \\
& 2 x+8
\end{aligned}
$$

The distributive property allows you to multiply each term inside a set of parentheses by a factor outside the parentheses. We say multiplication is distributive over addition and subtraction.

$$
\begin{aligned}
\curvearrowright(3+1) & =(5 \cdot 3)+(5 \cdot 1) \\
5(4) & =15+5 \\
20 & =20
\end{aligned}
$$

5(3-1) $=(5 \cdot 3)-(5 \cdot 1)$
$5(2)=15-5$
$10=10$

Not all operations are distributive. You cannot distribute division over addition.

$$
\begin{aligned}
14 \div(5+2) & \neq 14 \div 5+14 \div 2 \\
14 \div 7 & \neq 2.8+7 \\
2 & \not \neq 9.8
\end{aligned}
$$

Study the chart below.

Properties

Addition	Multiplication
Commutative: $a+b=b+a$ Associative: $\quad(a+b)+c=a+(b+c)$ Identity: $\quad 0$ is the identity. $a+0=a$ and $0+a=a$	Commutative: $a b=b a$ Associative: $\quad(a b) c=a(b c)$ Identity: $\quad 1$ is the identity. $a \cdot 1=a$ and $1 \cdot a=a$
Addition	Subtraction
Distributive: $\quad a(b+c)=a b+a c$ and $(b+c) a=b a+c a$	Distributive: $\quad a(b-c)=a b-a c$ and $(b-c) a=b a-c a$

These properties deal with the following:
order-commutative property of addition and commutative property of multiplication
grouping-associative property of addition and associative property of multiplication
identity—additive identity property and multiplicative identity property zero-multiplicative property of zero
distributive-distributive property of multiplication over addition and over subtraction

Notice in the distributive property that it does not matter whether \boldsymbol{a} is placed on the right or the left of the expression in parentheses.

$$
\boldsymbol{a}(b+c)=(b+c) \boldsymbol{a} \text { or } \boldsymbol{a}(b-c)=(b-c) \boldsymbol{a}
$$

The symmetric property of equality (if $a=b$, then $b=a$) says that if one quantity equals a second quantity, then the second quantity also equals the first quantity. We use the substitution property of equality when replacing a variable with a number or when two quantities are equal and one quantity can be replaced by the other. Study the chart and examples below that describe properties of equality.

Properties of Equality

Reflexive:	$a=a$
Symmetric:	If $a=b$, then $b=a$.
Transitive:	If $a=b$ and $b=c$, then $a=c$.
Substitution:	If $a=b$, then a may be replaced by b.

Examples of Properties of Equality	
Reflexive:	$8-e=8-e$
Symmetric:	If $5+2=7$, then $7=5+2$.
Transitive:	If $9-2=4+3$ and $4+3=7$, then $9-2=7$.
Substitution:	If $x=8$, then $x \div 4=8 \div 4 . x$ is replaced by 8.
	or $9+3=12$, then $9+3$ may be replaced by 12.
	If $9+3=1$

Study the following examples of how to simplify expressions. Refer to the charts above and on the previous page as needed.

$$
\begin{array}{cc}
5(6 x+3)+8 & \\
5(6 x+3)+8= & \longleftarrow \\
5(6 x)+5(3)+8= & \\
30 x+15+8= & \text { use the distributive property to } \\
30 x+23 &
\end{array}
$$

and

$$
\left.\begin{array}{rl}
6+2(4 x-3) \\
6+2(4 x-3) & =\longleftarrow \\
& \text { use order of operations to multiply } \\
\text { before adding, then }
\end{array}\right] \begin{aligned}
& \text { distribute } 2 \text { over } 4 x \text { and }-3 \\
& 6+2(4 x)+2(-3)=\longleftarrow \\
& 6+8 x+-6=\longleftarrow \\
& \text { use the associative property to } \\
& 8 x+0 \\
& 8 x
\end{aligned}
$$

Practice

Simplify by using the distributive property. Show essential steps.

1. $10(x+9)$
2. $4(3 x+7)-2$
3. $16(z-3)$
4. $-6(x+3)+18$
5. $a(b+5)$
6. $30+2(x+8)$
7. $5(x+3)+9$
8. $x(x+3)$
9. $4(x-5)+20$
10. $a(b+10)$
11. $5(3+x)-9$

Circle the letter of the correct answer.
12. Mrs. Smith has 5 children. Every fall she buys each child a new book bag for $\$ 20$, a new notebook for $\$ 3.50$, and other school supplies for $\$ 15$. Which expression is a correct representation for the amount she spends?

a. $5(20+3.50+15)$
b. $5+(20+3.50+15)$
c. $5(20 \cdot 3.50 \bullet 15)$
d. $5 \cdot 20+3.50+15$

Number the order of operations in the correct order. Write the numbers 1-4 on the line provided.
\qquad 13. addition or subtraction
\qquad 14. powers (exponents)
\qquad 15. parentheses
\qquad 16. multiplication or division

Simplifying Expressions

Here's how to use the distributive property and the definition of subtraction to simplify the following expressions.

Example 1:

Simplify

$$
\begin{aligned}
-7 a-3 a & \\
-7 a-3 a & =-7 a+-3 a \\
& =(-7+-3) a \longleftarrow \text { use the distributive property } \\
& =-10 a
\end{aligned}
$$

Example 2:

Simplify
$10 c-c$
$10 c-c=10 c-1 c$
$=10 c+-1 c$
$=(10+-1) c \longleftarrow$ use the distributive property
$=9 c$
The expressions $-7 a-3 a$ and $-10 a$ are called equivalent expressions. The expressions $10 c-c$ and $9 c$ are also called equivalent expressions. Equivalent expressions express the same number. An expression is in simplest form when it is replaced by an equivalent expression having no like terms and no parentheses.

Study these examples.

$$
\begin{aligned}
-5 x+4 x & =(-5+4) x \\
& =-x
\end{aligned}
$$

$$
\begin{aligned}
5 y-5 y & =5 y+-5 y \\
& =(5+-5) y \\
& =0 y \\
& =0
\end{aligned}
$$

$$
\text { The multiplicative property of } 0 \text { says for any number } a \text {, }
$$ $a \cdot 0=0 \cdot a=0$.

The following shortcut is frequently used to simplify expressions.
First

- rewrite each subtraction as adding the opposite
- then combine like terms (terms that have the same variable) by adding.

Simplify

$$
\begin{array}{rlrl}
2 a+3-6 a & \text { like terms } \\
2 a+3-6 a & =2 a+3+-6 a & \longleftarrow & \text { rewrite }-6 a \text { as }+-6 a \\
& =-4 a+3
\end{array}
$$

Simplify

Simplify

Practice

Simplify by combining like terms. Show essential steps.

1. $5 n+3 n$
2. $4 x+11 x$
3. $6 n-n$
4. $4 x-11 x$
5. $8 y-8 y$
6. $-4 x-11 x$
7. $7 n+3 n-6$
8. $10 y-4 y+7$
9. $-7 n-3 n-6$
10. $10 y+4 y-7$
11. $6 n-3+7$
12. $10 y-4-7$

$\begin{aligned} & \frac{0}{0}= \\ & \text { k } \end{aligned}$		
Practice		
	Match each definition with the correct term. Wr \qquad 1. $a(b+c)=a b+a c$ \qquad 2. $a+b=b+a$ \qquad 3. $(a+b)+c=a+(b+c)$	the letter on the line provided. A. associative property B. commutative property C. distributive property
	\qquad 4. $a \bullet 1=a$ \qquad 5. $a+0=a$ \qquad 6. $a \bullet 0=0$	A. additive identity B. multiplicative identity C. multiplicative property of zero
	7. if $a=b$, then $b=a$ 8. if $a=b$, then a may be replaced by b	A. substitution property of equality B. symmetric property of equality
	9. terms that have the same variables and the same corresponding exponents	A. like terms
	10. to perform as many of the indicated expressions as possible	B. order of operations
	11. the order of performing computations in parentheses first, then exponents or powers, followed by multiplication and / or division (as read from left to right), then addition and / or subtraction (as read from left to right)	C. simplify an expression

Equations with Like Terms

Consider the following equation.

$$
2 x+3 x+4=19
$$

Look at both sides of the equation and see if either side can be simplified.

Always simplify first by combining like terms.

$$
\begin{aligned}
2 x+3 x+4 & =19 \\
5 x+4 & =19 \\
5 x+4-4 & =19-4 \\
5 x & =15 \\
\frac{5 x}{5} & =\frac{15}{5} \\
x & \text { add like terms } \\
&
\end{aligned}
$$

Always mentally check your answer by substituting the solution for the variable in the original equation.

Substitute 3 for x in the equation.

$$
\begin{aligned}
2 x+3 x+4 & =19 \\
2(3)+3(3)+4 & =19 \\
6+9+4 & =19 \\
19 & =19 \quad \text { It checks! }
\end{aligned}
$$

Consider this example.
The product of x and 7 plus the product of x and 3 is 45 .
((C) Remember: To work a problem like this one, we need to remember two things. The word product means multiply and the word is always translates to $=$.

The product of x and 7 plus the product of x and 3 is 45 .

Check by substituting 4.5 for x in the original equation.

$$
\begin{aligned}
7 x+3 x & =45 \\
7(4.5)+3(4.5) & =45 \\
31.5+13.5 & =45 \\
45 & =45 \quad \text { It checks! }
\end{aligned}
$$

Here is another example which appears to be more challenging.

$$
\begin{aligned}
3 x-2-x+10 & =-12 \\
3 x-2-1 x+10 & =-12 \\
3 x-1 x-2+10 & =-12 \\
2 x+8 & =-12 \\
2 x+8-8 & =-12-8 \longleftarrow \text { remember: } 1 \cdot x=x \\
2 x & =-20 \\
\frac{2 x}{2} & =\frac{-20}{2} \\
x & =-10
\end{aligned}
$$

Check by substituting -10 into the original equation.

$$
\begin{aligned}
3 x-2-x+10 & =-12 \\
3(-10)-2-(-10)+10 & =-12 \\
-30-2+10+10 & =-12 \\
-32+20 & =-12 \\
-12 & =-12 \quad \text { It checks! }
\end{aligned}
$$

Practice

Solve these equations by first simplifying each side. Show essential steps.

1. $4 x+6 x=-30$
2. $3 y-y-8=30$
3. $-2 x+10 x-6 x=-12$
4. $x+10-2 x=-2$
5. $12 m-6 m+4=-32$
6. $13 x+105-8 x=0$

$$
\text { 4. } 3=4 x+x-2
$$

8. $2 x+10+3 x-8=-13$

Check yourself: Add all your answers for problems 1-8. Did you get a sum of -7 ? If yes, complete the practice. If no, correct your work before continuing.

Write an equation to represent each situation. Then solve the equation for \boldsymbol{x}. Show essential steps.
9. The sum of $2 x, 3 x$, and $5 x$ is 50 .
10. The difference of $3 x$ and $8 x$ is -15 .
11. The sum of $6 x,-2 x$, and $10 x$, decreased by 15 is 13 .
12. Your neighbor hired you to babysit for $\$ x$ per hour. Here is a record of last week:

Your total salary for the week was $\$ 198.00$. How much do you earn per hour?
13. The perimeter (\boldsymbol{P}) of the triangle is 48 inches. What is x ?
(c) $2 \rightarrow$ Remember: The perimeter of a figure is the distance around a figure, or the sum of the lengths (l) of the sides.

14. Use the answer from problem 13 to find the length (l) of each side of the triangle. Do the sides add up to 48 inches?
15. The perimeter of the rectangle is 58 inches. What is x ?

16. Use the answer from problem 15 to find the length and width (w) of the rectangle. Do the sides add up to 58 inches?
17. In any triangle, the sum of the measures (\mathbf{m}) of the angles (\angle) is always 180 degrees $\mathbf{(}^{\circ}$). What is x ?

18. Using the answer from problem 17, find the measure of each angle (\angle). Do the angles add up to 180 degrees?

Circle the letter of the correct answer.
19. You and your friend go to a popular theme park in central Florida. Admission for two comes to a total of $\$ 70$. Both of you immediately buy 2 hats to wear during the
 day. Later, as you are about to leave you decide to buy 4 more hats for your younger brothers and sisters who didn't get to come. The total bill for the day is $\$ 115.00$. Which equation could you use to find the cost of a single hat?
a. $\quad 6 x=115$
b. $70+2 x+4 x=115$
c. $70-6 x=115$
d. $70+2 x=115+6 x$

Complete the following.
20. A common mistake in algebra is to say that

$$
\begin{aligned}
& 3 x+4 x=7 x^{2} \\
& \text { instead of } \\
& 3 x+4 x=7 x .
\end{aligned}
$$

Let $x=2$ and substitute into both expressions below.
(U) Remember: When you are doing $7 x^{2}$ the rules for the order of operation require that you square before you multiply!

$$
x=2
$$

$$
3 x+4 x=7 x
$$

$$
3 x+4 x=7 x^{2}
$$

Are you convinced that $3 x+4 x$ is not equal to $(\neq) 7 x^{2}$?

Putting It All Together

Guidelines for Solving Equations

3. Undo addition or subtraction using inverse operations.
4. Undo multiplication or division using inverse operations.
5. Check by substituting the solution in the original equation.

SAM $=$ Simplify (steps 1 and 2) then
Add (or subtract)
Multiply (or divide)

Example 1

Solve:

$$
\begin{array}{rlr}
6 y+4(y+2) & =88 \\
6 y+4 y+8 & =88 & \text { use distributive property } \\
10 y+8-8 & =88-8 \longleftarrow & \text { combine like terms and undo addition } \\
& & \text { by subtracting } 8 \text { from each side } \\
\frac{10 y}{10} & =\frac{80}{10} & \text { undo multiplication by dividing by } 10 \\
y & =8
\end{array}
$$

Check solution in the original equation:

$$
\begin{aligned}
6 y+4(y+2) & =88 \\
6(8)+4(8+2) & =88 \\
48+4(10) & =88 \\
48+40 & =88 \\
88 & =88 \quad \text { It checks! }
\end{aligned}
$$

Example 2

Solve:

$$
\begin{array}{rlrl}
-\frac{1}{2}(x+8) & =10 \\
-\frac{1}{2} x-4 & =10 & \longleftarrow & \text { use distributive property } \\
-\frac{1}{2} x-4+4 & =10+4 & \longleftarrow & \text { undo subtraction by adding } 4 \text { to } \\
\text { both sides }
\end{array}
$$

Check solution in the original equation:

$$
\begin{aligned}
-\frac{1}{2}(x+8) & =10 \\
-\frac{1}{2}(-28+8) & =10 \\
-\frac{1}{2}(-20) & =10 \\
10 & =10 \quad \text { It checks! }
\end{aligned}
$$

Example 3

Solve:

$$
\begin{array}{rlrl}
26 & =\frac{2}{3}(9 x-6) & \\
26 & =\frac{2}{3}(9 x)-\frac{2}{3}(6) \longleftarrow & \text { use distributive property } \\
26 & =6 x-4 & & \\
26+4 & =6 x-4+4 & & \text { undo subtraction by adding } 4 \text { to } \\
& & \begin{array}{l}
\text { each side }
\end{array} \\
\frac{30}{6} & =\frac{6 x}{6} & & \text { undo multiplication by dividing } \\
5 & =x & &
\end{array}
$$

Check solution in the original equation:

$$
\begin{aligned}
& 26=\frac{2}{3}(9 x-6) \\
& 26=\frac{2}{3}(9 \bullet 5-6) \\
& 26=\frac{2}{3}(39) \\
& 26=26 \quad \text { It checks! }
\end{aligned}
$$

Example 4

Solve:

$$
\begin{array}{rlrl}
x-(2 x+3) & =4 \\
x-1(2 x+3) & =4 \\
x-2 x-3 & =4 & \longleftarrow & \text { use the multiplicative property of }-1 \\
& & \text { use the multiplicative identity of } 1 \\
\text { and use the distributive property }
\end{array}
$$

Examine the solution steps above. See the use of the multiplicative property of -1 in front of the parentheses on line two.
line 1: $\quad x-(2 x+3)=4$
line 2: $x-1(2 x+3)=4$
Also notice the use of multiplicative identity on line three.
line 3: $\quad 1 x-2 x-3=4$
The simple variable x was multiplied by $1(1 \bullet x)$ to equal $1 x$. The $1 x$ helped to clarify the number of variables when combining like terms on line four.

Check solution in the original equation:

$$
\begin{aligned}
x-(2 x+3) & =4 \\
-7-(2 \cdot-7+3) & =4 \\
-7-(-11) & =4 \\
4 & =4 \quad \text { It checks! }
\end{aligned}
$$

Practice

Solve and check. Show essential steps.

1. $10(2 n+3)=130$
2. $4(y-3)=-20$
3. $\frac{x}{-2}+4=-10$
4. $6 x+6(x-4)=24$

Solve and Check. Show essential steps.

9. Write an equation for the area of the rectangle. Then solve for x.
(ひ) Remember: To find the area (A) of a rectangle, multiply the length (l) times the width (w). $A=(l w)$

8

The area is 64 square units.
10. Write an equation for the area of the rectangle. Then solve for x.

The area is 56 square units.
11. Write an equation for the measure of degrees $\left({ }^{\circ}\right)$ in the triangle. Then solve for x.
(c) Remember: For any triangle, the sum of the measures of the angles is 180 degrees.

Use the list below to write the correct term for each definition on the line provided.

area (A) length (l) perimeter (P)	rectangle sum	triangle width (w)

\qquad 1. a one-dimensional measure that is the measurable property of line segments
2. a parallelogram with four right angles
3. a one-dimensional measure of something side to side
4. the result of adding numbers together
5. the distance around a figure
6. the measure, in square units, of the inside region of a closed two-dimensional figure; the number of square units needed to cover a surface
7. a polygon with three sides

Practice

Use the list below to write the correct term for each definition on the line provided.

angle (\angle)	side
degree $\left({ }^{\circ}\right)$	square (of a number)
inverse operation	square units
measure (m) of an angle (\angle)	

1. two rays extending from a common endpoint called the vertex
2. the number of degrees $\left({ }^{\circ}\right)$ of an angle
3. units for measuring area; the measure of the amount of an area that covers a surface
4. common unit used in measuring angles
5. the edge of a polygon, the face of a polyhedron, or one of the rays that make up an angle
6. an action that cancels a previously applied action
7. the result when a number is multiplied by itself or used as a factor twice

Lesson Three Purpose

Reading Process Strand
Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.1

Solve linear equations in one variable that include simplifying algebraic expressions.

- MA.912.A.3.2

Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality.

- MA.912.A.3.4

Solve and graph simple and compound inequalities in one variable and be able to justify each step in a solution.

Standard 10: Mathematical Reasoning and Problem Solving

- MA.912.A.10.1

Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guessing- and-checking, solving a simpler problem, writing an equation, working backwards, and creating a table.

Solving Equations with Variables on Both Sides

I am thinking of a number. If you multiply my number by 3 and then subtract 2 , you get the same answer that you do when you add 4 to my number. What is my number?

To solve this riddle, begin by translating these words into an algebraic sentence. Let x represent my number.

If you multiply my number by 3 and then subtract 2

$$
3 x-2
$$

you get the same answer
$=$
that you do when you add 4 to my number

$$
4+x
$$

Putting it all together, we get the equation $3 x-2=4+x$. Note that this equation is different from equations in previous units. There is a variable on both sides. To solve such an equation, we do what we've done in the past: make sure both sides are simplified, and that there are no parentheses.

Strategy: Collect the variables on one side. Collect the numbers on the other side.

Now let's go back to the equation which goes with our riddle.

Solve:

$$
\begin{array}{rlrl}
3 x-2 & =4+x & \longleftarrow \text { both sides are simplified } \\
3 x-2 & =4+1 x & \longleftarrow \text { multiplicative identity of } 1 \\
3 x-2-1 x & =4+1 x-1 x & \longleftarrow & \text { collect variables on the left } \\
2 x-2 & =4 & & \text { combine like terms; simplify } \\
2 x-2+2 & =4+2 & & \text { collect numbers on the right } \\
\frac{2 x}{2} & =\frac{6}{2} & & \text { divide both sides by } 2 \\
x & =3
\end{array}
$$

Check solution in the original equation and the original riddle:

$$
\begin{aligned}
3 x-2 & =4+x \\
3 \cdot 3-2 & =4+3 \\
9-2 & =7 \\
7 & =7 \quad \text { It checks! }
\end{aligned}
$$

Study the equation below.

Solve:

$$
\begin{aligned}
2(3 x+4) & =5(x-2) \\
6 x+8 & =5 x-10 \\
6 x+8-5 x & =5 x-10-5 x \longleftarrow \text { distributive property } \\
x+8 & =-10 \\
x+8-8 & =-10-8 \\
x & =-18
\end{aligned}
$$

Check solution in the original equation:

$$
\begin{aligned}
2(3 x+4) & =5(x-2) \\
2(3 \bullet-18+4) & =5(-18-2) \\
2(-50) & =5(-20) \\
-100 & =-100 \quad \text { It checks! }
\end{aligned}
$$

Let's work this next example in two different ways.

1. Collect the variables on the left and the numbers on the right.

Solve:

$$
\begin{aligned}
6 y & =4(5 y-7) \\
6 y & =20 y-28 \\
6 y-20 y & =20 y-28-20 y \\
\frac{-14 y}{-14} & =\frac{-28}{-14} \\
y & =2
\end{aligned}
$$

Check solution in the original equation:

$$
\begin{array}{rlr}
6 y & =4(5 y-7) & \\
6 \cdot 2 & =4(5 \cdot 2-7) & \\
12 & =4 \bullet 3 \\
12 & =12 \quad \text { It checks! }
\end{array}
$$

2. Collect the variables on the right and numbers on the left.

Solve:

$$
\begin{array}{rlrl}
6 y & =4(5 y-7) & & \\
6 y & =20 y-28 & \longleftarrow & \text { distributive property } \\
6 y-6 y & =20 y-28-6 y & \longleftarrow & \text { variables on the right } \\
0 & =14 y-28 & \longleftarrow & \text { simplify } \\
0+28 & =14 y-28+28 & \longleftarrow & \text { numbers on the left } \\
\frac{28}{14} & =\frac{14 y}{14} & & \text { divide both sides by } 14 \\
2 & =y
\end{array}
$$

We get the same answer, so the choice of which side you put the variable on is up to you!

Solve each equation below. Then find your solution at the bottom of the page. Write the letter next to the number of that equation on the line provided above the solution. Then you will have the answer to this question:

Which great explorer's last words were,
"I have not told half of what I saw!"
1 1. $2 x-4=3 x+6$
P 5. $-2 x+6=-x$
1 2. $2(-12-6 x)=-6 x$ m 6. $7 x=3(5 x-8)$
a 3. $x-3=2(-11+x)$
(7. $2(12-8 x)=1 x-11 x$

C \quad 4. $\quad-7(1-4 m)=13(2 m-3)$
8.

Check yourself: Use the answer above to check your solutions to problems 1-7. Did your solutions spell out the great explorer's name? If not, correct your work before continuing.

Solve and check. Show essential steps.

9. Six more than 5 times a number is the same as 9 less than twice the number. Find the number.
10. Twelve less than a number is the same as 6 decreased by 8 times the number. Find the number.
11. The product of 5 and a number, plus 17 , is equal to twice the sum of the same number and -5 . Find the number.

Complete to solve the following.
12. $-12+7(x+3)=4(2 x-1)+3$
(U) Remember: Always multiply before you add.
$-12+$ \qquad $+$ \qquad $=-$ $-$ \qquad $+3$

$$
7 x+\ldots \quad=\quad 8 x-
$$

Now finish the problem.
13. $-56+10(x-1)=4(x+3)$
14. $5(2 x+4)+3(-2 x-3)=2 x+3(x+4)$
\qquad $+$ \qquad $+$ \qquad - \qquad $=2 x+$ \qquad $+$ \qquad distributive property distributive property

$$
\text { add like terms } x+11=\frac{}{\text { add like terms }}
$$

Now finish the problem.
15. $-16 x+10(3 x-2)=-3(2 x+20)$
$\begin{array}{r}-16 x+ \\ \text { distributive property }\end{array}=\overline{\text { distributive property }}$
Add like terms and finish the problem.
16. $6(-2 x-4)+2(3 x+12)=37+5(x-3)$

Problems That Lead to Equations

Joshua presently weighs 100 pounds, but is steadily growing at a rate of 2 pounds per week. When will he weigh 140 pounds?

The answer is 20 weeks. Let's use this simple problem to
 help us think algebraically.

Step 1: Read the problem and label the variable. Underline all clues.
Joshua presently weighs 100 pounds, but is steadily growing at a rate of $\underline{2}$ pounds per week. When will he weigh $\underline{140}$ pounds?

Let x represent the number of weeks.
Step 2: Plan.
Let $2 x$ represent the weight Joshua will gain.
Step 3: Write the equation.

$$
\begin{array}{cl}
\text { present weight } & + \text { gain }=\text { desired weight } \\
100 & +2 x=c 140
\end{array}
$$

Step 4: Solve the equation.

$$
\begin{aligned}
100+2 x & =140 \\
100+2 x-100 & =140-100 \longleftarrow \text { subtract } 100 \text { from both } \\
& \text { sides } \\
2 x & =40 \\
\frac{2 x}{2} & =\frac{40}{2} \\
x & =20
\end{aligned} \quad \text { divide both sides by } 2
$$

Step 5: Check your solution. Does your answer make sense?

$$
\begin{aligned}
& \text { now gain } \\
& 100+2(20)=140
\end{aligned}
$$

We will use this 5-step approach on the following problems. You will find that many times a picture or chart will also help you arrive at an answer. Remember, we are learning to think algebraically, and to do that the procedure is as important as the final answer!

5-Step Plan for Thinking Algebraically

Step 1: Read the problem and label the variable. Underline all clues.
Decide what x represents.
Step 2: Plan.
Step 3: Write an equation.
Step 4: Solve the equation.
Step 5: Check your solution. Does your answer make sense?

Practice

Use the 5-step plan to solve and check the following. Show essential steps.

1. Leon's television breaks down. Unfortunately he has only $\$ 100.00$ in savings for emergencies. The repairman charges $\$ 35.00$ for coming to Leon's house and then another $\$ 20.00$ per hour for fixing the television.
 How many hours can Leon pay for the repairman to work?
a. Step 1: Read the problem and label the variable. Underline all clues. (Note: The clues have been italicized for you.)

Let x represent \qquad .
b. Step 2: Plan. Let $20 x$ represent \qquad
\qquad .
c. Step 3: Write an equation. \qquad
d. Step 4: Solve the equation.
e. Step 5: Check your solution. Does it make sense? \qquad
2. Samantha charges $\$ 16.00$ to deliver sand to your house, plus $\$ 3.50$ per cubic foot for the sand that you buy. How much sand can you buy for $\$ 121.00$?
a. Step 1: Read the problem and label the variable. Underline all clues.

Let x represent \qquad .
b. Step 2: Plan. Let \qquad x represent \qquad
c. Step 3: Write an equation. \qquad
d. Step 4: Solve the equation.
e. Step 5: Check your solution. Does it make sense? \qquad

Explain. \qquad
3. Suppose that the gas tank of a car holds 20 gallons, and that the car uses $\frac{1}{10}$ of a gallon per mile. How far has the car gone when 5 gallons remain?
a. Step 1: Read the problem and label the
 variable. Underline all clues.

Let x represent \qquad .
b. Step 2: Plan. Let $\frac{1}{10} x$ represent \qquad
\qquad .
c. Step 3: Explain why the appropriate equation is $20-\frac{1}{10} x=5$.
\qquad
\qquad
d. Step 4: Solve the equation.
e. Step 5: Check your solution. Does it make sense? \qquad
4. Jared weighs 250 pounds and is steadily losing 3 pounds per week. How long will it take him to weigh 150 pounds?
a. Step 1: Read the problem and label the variable. Underline all clues.

Let x represent \qquad .
b. Step 2: Let $3 x$ represent \qquad .
c. Step 3: Write an equation. \qquad
\qquad
d. Step 4: Solve the equation.
e. Step 5: Check your solution. Does it make sense? \qquad
5. Batman has $\$ 100.00$ and spends $\$ 3.00$ per day. Robin has $\$ 20.00$ but is adding to it at the rate of $\$ 5.00$ per day. When will they have the same amount of money?
a. Step 1: Read the problem and label the variable. Underline all clues.

Let x represent \qquad .
b. Step 2: Plan. $100-3 x$ is what Batman will have after x days.

How much will Robin have after x days? \qquad
\qquad
c. Step 3: Write an equation stating that Batman's money is the same amount as Robin's money after x days.
d. Step 4: Solve the equation.
e. What does your solution mean? \qquad
\qquad
\qquad
\qquad
f. Step 5: Check your solution. Does it make sense? \qquad
6. Suppose you live in Tallahassee, Florida, where the temperature is 84 degrees and going down 3 degrees per hour. A friend lives in Sydney, Australia, where the temperature is 69 degrees and going up at a rate of 2 degrees per hour. How long would you and your friend have to wait before the temperatures in both places are equal?
a. Step 1: Read the problem and label the variable. Underline all clues.

Let x represent \qquad .
b. Step 2: Plan. Let \qquad represent

Tallahassee's temperature and \qquad represent Sydney's temperature.
c. Step 3: Write an equation. Let the Tallahassee temperature equal Sydney's temperature. \qquad
d. Step 4: Solve the equation.
e. Step 5: Check your solution. Does it make sense? \qquad

Use the 5-step plan to solve and check the following. Show essential steps.

Sometimes a chart helps organize the information in a problem.

1. I am thinking of 3 numbers. The second number is 4 more than the first number. The third number is twice the first number. The sum of all 3 numbers is 28 . Find the numbers.

Algebraic Thinking:

- Step 1: Read the problem and label the variable.

Underline all clues. (Note: The clues have been italicized for you.)

What does x represent? Since the second and third numbers are described in terms of the first number, let x represent the first number.

- Step 2: Plan. See the table below.

Description		Value	
first number	x	$=$	
second number third number	$\begin{aligned} & x+4 \\ & 2 x \end{aligned}$	=	
sum	$4 x+4$	=	28

- Step 3: Write an equation.

$$
4 x+4=28
$$

- Step 4: Solve the equation.
a. The equation $4 x+4=28$ will give you the value of only the first number. Substitute your answer back into the expressions in the table on the previous page to find the second and third numbers.
b. Solve the equation to find the value of the first number.

$$
4 x+4=28
$$

c. Substitute the first number's value in the expression from the table on the previous page to get the value of the second number.

$$
x+4
$$

d. Substitute the first number's value in the expression from the table on the previous page to get the value of the third number. $2 x$

- Step 5: Check your solution. Does it make sense?
e. Check solution in original equation.
f. Do your numbers add up to 28 ? \qquad
Write an equation and solve to prove that the sum of the 3 numbers equal 28.

Sometimes a picture helps organize the information in a problem.
2. A triangle has a perimeter (P) of 30 inches. The longest side is 8 inches longer than the shortest side. The third side is 1 inch shorter than the longest side. Find the sides.

I(c) Remember: The perimeter is the sum of all the lengths of all sides.

- Step 1: Read the problem and label the variable. Underline all clues.

Hint: Let the shortest side be x inches long.

- Step 2: Plan.
a. Draw a triangle. Label the shortest side x. Label the other two sides in terms of x.
b. Let \qquad represent adding
up the sides of the triangle.
- Step 3: Write an equation.
c. Use the fact that the perimeter is 30 inches to write an equation.
- Step 4: Solve the equation.
d. Find x by solving the equation.
- Step 5: Check your solution. Does it make sense?
e. Check solution in original equation.
f. Use the value of x to find the other 2 sides.
g. Do the sides add up to 30 ? \qquad
Write an equation and solve to prove that the sum of the 3 sides of the triangle equals 30 .

3. A rectangle has a perimeter of 38 inches and a width of x inches. The length of the rectangle is 4 more than twice the width. Label all 4 sides.

Draw and label a rectangle and use the 5-step plan to find the dimensions of the rectangle.
4. The measures of the angles in any triangle add up to 180 degrees. Let the smallest angle be x degrees. The second angle is twice the smallest. The third angle is 30 degrees more than the second angle. Find the measures of all the angles.

Draw and label a triangle. Use the 5-step plan to find all angles.
5. Write an equation for the area of the rectangle.
(c) Remember: To find the area of a rectangle we multiply the length times the width. $A=l \bullet w$

Solve the equation for x, then substitute it in $2 x-1$ to find the length.

Is the product of the length and width 35 square inches? \qquad
6. Consider the rectangle and the triangle below. What is the value of x if the area of the rectangle equals the perimeter of the triangle?

Let \qquad equal
the area of the rectangle.

Let \qquad equal
the perimeter of the triangle.

Now set up an equation. Let the area of the rectangle equal the perimeter of the triangle. Solve for x.
7. A square is a four-sided figure with all sides the same length. Find the value of x so that the figure is a square.

Circle the letter of the correct answer.
8. Mrs. Jones brings $\$ 142.50$ to pay for her family's expenses to see Florida A\&M University play football. She has to pay $\$ 10.00$ to park. An adult ticket costs $\$ 45.00$. She has 4 children who qualify for student tickets. She has $\$ 27.50$ left at the end of the day. Which equation can you use to find the cost of a student ticket?
a. $4 x+45=\$ 142.50$
b. $\$ 27.50+4 x+45=\$ 142.50$
c. $\$ 142.50-10-45-4 x=\$ 27.50$
d. $\$ 142.50-10-45+4 x=\$ 27.50$

Answer the following. Show essential steps.

Consecutive even integers are numbers like 6,8 , and 10 or 14,16 , and 18. Note that you add 2 to the smallest to get the second number and 4 to the smallest to get the third number. Use this information to solve the following problem.
9. The sum of three consecutive even integers is 198 . Find the numbers.

Description		Value
first number	x	$=$
second number	$x+2$	$=$
third number	$x+4$	$=$
sum	$=198$	

Set up an equation and solve for x. Substitute your answer back into the table above to find all answers. Do the numbers add up to $198 ?$

Practice

Use the list below to complete the following statements.

consecutive even integers	square table

1. A data display that organizes information about a topic into categories is called a(n) \qquad or chart.
2. A rectangle with four sides the same length is called a
3. Consecutive even \qquad are numbers like 6, 8 , and 10 or 14,16 , and 18 .
4. When numbers are in order they are \qquad .
5. Any integer divisible by 2 is $a(n)$ \qquad integer.

Lesson Four Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.1

Solve linear equations in one variable that include simplifying algebraic expressions.

- MA.912.A.3.2

Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality.

- MA.912.A.3.4

Solve and graph simple and compound inequalities in one variable and be able to justify each step in a solution.

Standard 10: Mathematical Reasoning and Problem Solving

- MA.912.A.10.1

Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guessing- and-checking, solving a simpler problem, writing an equation, working backwards, and creating a table.

Graphing Inequalities on a Number Line

In this unit we will graph inequalities on a number line. A graph of a number is the point on a number line paired with the number. Graphing solutions on a number line will help
 you visualize solutions.

Here are some examples of inequalities, their verbal meanings, and their graphs.

Inequalities

Inequality	Meaning	Graph
a. $x<3$	All real numbers less than 3.	4 1 1 1 0 -5 -4 -3 -2 -1 0 1 2 3 4 The open circle means that 3 is not a solution. Shade to left.
b. $x>-1$	All real numbers greater than -1.	The open circle means that -1 is not a solution. Shade to right.
c. $x \leq 2$	All real numbers less than or equal to 2 .	The solid circle means that 2 is a solution. Shade to left.
d. $x \geq 0$	All real numbers greater than or equal to 0 .	$\begin{array}{cccccccccc} & 1 & 1 & 0 & & 1 & & 1 & \\ -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \end{array}$ The solid circle means that 0 is a solution. Shade to right.

For each example, the inequality is written with the variable on the left. Inequalities can also be written with the variable on the right. However, graphing is easier if the variable is on the left.

Consider $x<5$, which means the same as $5>x$. Note that the graph of $x<5$ is all real numbers less than 5 .

The graph of $5>x$ is all real number that 5 is greater than.

To write an inequality that is equivalent to (or the same as) $x<5$, move the number and variable to the opposite side of the inequality, and then reverse the inequality.

The inequality $y \geq-2$ is equivalent to $-2 \leq y$. Both inequalities can be written as the set of all real numbers that are greater than or equal to -2 .

The inequality $0 \leq x$ is equivalent to $x \geq 0$. Each can be written as the set of all real numbers that are greater than or equal to zero.
(c) Remember: Real numbers are all rational numbers and all irrational numbers.

The Venn diagram below is a graphic organizer that aids in visualizing what real numbers are.

The Set of Real Numbers

Rational numbers can be expressed as a ratio $\frac{a}{b}$, where a and b are integers and $b \neq 0$.

rational numbers	4	$-3 \frac{3}{4}$	0.250	0	$0 . \overline{3}$
expressed as ratio of two integers	$\frac{4}{1}$	$-\frac{15}{4}$	$\frac{1}{4}$	$\frac{0}{1}$	$\frac{1}{3}$

Note: All integers are rational numbers.

A ratio is the comparison of two quantities. For example, a ratio of 8 and 11 is $8: 11$ or $\frac{8}{11}$.

Practice

Match each inequality with the correct graph.
\qquad 1. $x \geq-3$
a.

\qquad 2. $x \leq 0$
b.

\qquad 3. $x>4$
c.

\qquad 4. $2>x$
d.

\qquad 5. $x \leq-2$
e.

Write an inequality for each graph.
6. \qquad

7. \qquad

8. \qquad

9. \qquad

Graph each inequality.
10. $x \geq-1$

11. $x<0$

12. $x>5$

13. $x \leq-3$

Solving Inequalities

We have been solving equations since Unit 1. When we solve inequalities, the procedures are the same except for one important difference.

When we multiply or divide both sides of an inequality by the same negative number, we reverse the direction of the inequality symbol.

Example: Solve by dividing by a negative number and reversing the inequality sign.

$$
\begin{aligned}
&-3 x<6 \\
& \frac{-3 x}{-3}>\frac{6}{-3} \longleftarrow \text { divide each side by }-3 \text { and } \\
& \\
& x>-2
\end{aligned} \quad \text { reverse the inequality symbol }
$$

To check this solution, pick any number greater than -2 and substitute your choice into the original inequality. For instance, $-1,0$, or 3 , or 3,000 could be substituted into the original problem.

Check with different solutions of numbers greater than -2:
substitute -1

$$
\begin{aligned}
-3 x & <6 \\
-3(-1) & <6 \\
3 & <6 \quad \text { It checks! }
\end{aligned}
$$

substitute 0

$$
\begin{aligned}
-3 x & <6 \\
-3(0) & <6 \\
0 & <6 \quad \text { It checks! }
\end{aligned}
$$

substitute 3

$$
\begin{aligned}
-3 x & <6 \\
-3(3) & <6 \\
-9 & <6 \quad \text { It checks! }
\end{aligned}
$$

substitute 3,000

$$
\begin{aligned}
-3 x & <6 \\
-3(3,000) & <6 \\
-9,000 & <6 \quad \text { It checks! }
\end{aligned}
$$

Notice that -1, 0, 3, and 3,000 are all greater than -2 and each one checks as a solution.

Study the following examples.
Example: Solve by multiplying by a negative number and reversing the inequality sign.

$$
\begin{array}{rlr}
-\frac{1}{3} y & \geq 4 \\
(-3)-\frac{1}{3} y & \leq 4(-3) \quad \longleftarrow \quad \text { multiply each side by }-3 \text { and } \\
y & \leq-12 &
\end{array}
$$

Example: Solve by first adding, then dividing by a negative number, and reversing the inequality sign.

$$
\begin{array}{rlrl}
-3 a-4 & >2 & \\
-3 a-4+4 & >2+4 & \longleftarrow & \text { add } 4 \text { to each side } \\
-3 a & >6 \\
\frac{-3 a}{-3} & <\frac{6}{-3} & \longleftarrow & \text { divide each side by }-3 \text { and } \\
a & <-2 & &
\end{array}
$$

Example: Solve by first subtracting, then multiplying by a negative number, and reversing the inequality sign.

$$
\begin{array}{rlrl}
\frac{y}{-2}+5 & \leq 0 & \\
\frac{y}{-2}+5-5 & \leq 0-5 & & \\
\frac{y}{-2} & \leq-5 & & \\
\frac{(-2) y}{-2} & \geq(-5)(-2) & & \text { multract } 5 \text { from each side each side by }-2 \text { and } \\
y & \geq 10 & &
\end{array}
$$

Example: Solve by first subtracting, then multiplying by a positive number and not reversing the inequality sign.
$\frac{n}{2}+5 \leq 2$
$\begin{aligned} \frac{n}{2}+5-5 & \leq 2-5 & \longleftarrow & \text { subtract } 5 \text { from each side } \\ \frac{n}{2} & \leq-3 & & \\ \frac{(2) n}{2} & \leq-3(2) & & \text { multiply each side by } 2, \text { but do not reverse } \\ n & \leq-6 & & \text { the inequality symbol because we } \\ & & & \text { multiplied by a positive number }\end{aligned}$
When multiplying or dividing both sides of an inequality by the same positive number, do not reverse the inequality symbol-leave it alone.

Example: Solve by first adding, then dividing by a positive number, and not reversing the inequality sign.

$$
\begin{array}{rlrl}
7 x-3 & >-24 & \\
7 x-3+3 & >-24+3 \longleftarrow & & \text { add } 3 \text { to each side } \\
7 x & >-21 & & \\
\frac{7 x}{7} & >\frac{-21}{7} & & \text { divide each side by } 7 \text { do not reverse } \\
x & >-3 & & \text { the inequality symbol because we } \\
& & & \text { divided by a positive number }
\end{array}
$$

Solve each inequality. Show essential steps. Then graph the solutions.

1. $x+5 \geq 2$

2. $y-1 \leq 5$

3. $4<n-1$

4. $2 \geq y-4$

5. $5 a-2 \leq 3$

6. $-\frac{1}{4} y>0$

7. $-2 a \geq-12$

8. $\frac{a}{3}-3<1$

9. $\frac{y}{2}-6<-5$

10. $\frac{a}{-3}+9<8$

Practice

Solve the following. Show essential steps.

1. $2 y+1 \leq 4$
2. $\frac{1}{5} y+9 \leq 8$
3. $-\frac{1 a}{3}-4>2$
4. $-10<2 b-14$
5. $-11 a+3<-30$
6. $10 y+3 \leq 8$

Study the following.

Many problems in everyday life involve inequalities.
Example: A summer camp needs a boat with a motor. A local civic club will donate the
 money on the condition that the camp will spend less than $\$ 1,500$ for both. The camp decides to buy a boat for $\$ 1,050$. How much can be spent on the motor?

1. Choose a variable. Let $x=$ cost of the motor, then let $\quad x+1,050=$ cost of motor and boat, and cost of motor + cost of boat $<$ total money.
2. Write as an inequality.

$$
x+1,050<1,500
$$

3. Solve.

$$
\begin{aligned}
x+1,050-1,050 & <1,500-1,050 \\
x & <\$ 450
\end{aligned}
$$

4. Interpretation of solution: The camp can spend any amount less than $\$ 450$ for the motor. (Note: The motor cannot cost $\$ 450$.)

Use the steps below for the word problems on the following pages.

1. Choose a variable
2. Write as an inequality
3. Solve
4. Interpret your solution
5. If $\$ 50$ is added to 2 times the amount of money in a wallet, the result is less than $\$ 150$. What is the greatest amount of money that could be in the wallet?

Interpretation of solution: \qquad
\qquad
\qquad
8. Sandwiches cost $\$ 2.50$ and a drink is $\$ 1.50$. If you want to buy one drink, what is the greatest number of sandwiches you could also buy and spend less than \$10.00?

Interpretation of solution: \qquad
\qquad
\qquad
9. Annie babysits on Friday nights and Saturdays for $\$ 3.00$ an hour. Find the fewest number of hours she can babysit and earn more than $\$ 20.00$ a week.

Interpretation of solution:

1. Graphing solutions on a number line will help you visualize solutions.
\qquad 2. An inequality can only be written with the variable on the right.
\qquad 3. The graph below of $x<5$ shows all real numbers greater than 5.

\qquad 4. Real numbers are all rational and irrational numbers.
\qquad 5. A ratio is the comparison of two quantities.
\qquad 6. To write an inequality that is equivalent to $x<5$, move the number and variable to the opposite side of the inequality, and then reverse the inequality.
\qquad 7. When we multiply or divide each side of an inequality by the same negative number, we reverse the direction of the inequality symbol.
\qquad 8. There are no problems in everyday life that involve inequalities.
\qquad 9. An inequality is a sentence that states one expression is greater than, greater than or equal to, less than, less than or equal to, or not equal to another expression.

Practice

Use the list below to write the correct term for each definition on the line provided.

decrease difference equation	increase reciprocals simplify an expression	solve

\qquad 1. a number that is the result of subtraction
2. to find all numbers that make an equation or inequality true
\qquad 3. to make less
\qquad 4. a mathematical sentence stating that the two expressions have the same value
\qquad 5. to make greater
\qquad 6. any two numbers with a product of 1 ; also called multiplicative inverse
7. the result of adding numbers together
8. to perform as many of the indicated operations as possible

$\begin{aligned} & \text { 卷 } \\ & \text { * } \end{aligned}$		
Practice		
Match each definition with the correct term. Write the letter on the line provided.		
1. a sentence that states one expression is A. angle (\angle) greater than, greater than or equal to, less than, less than or equal to, or not equal to another expression B. graph (of a		
3. the point on a number line paired with C. inequality the number		
4. a one-dimensional measure that is the D. length (l) measurable property of line segments		
5. a data display that organizes E. measure (m) information about a topic into of an angle (\angle) categories		
6. the number of degrees $\left({ }^{\circ}\right.$) of an angle F. odd integer		
7. a polygon with three sides G. perimeter (P)		
8. two rays extending from a common endpoint called the vertex		
9. any integer not divisible by 2 ; any H. rectangle integer with the digit $1,3,5,7$, or 9 in the units place; any integer in the set I. table (or chart) $\{\ldots,-5,-3,-1,1,3,5, \ldots\}$		
	10. a parallelogram with four right angles	J. triangle

Lesson Five Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.3 Solve literal equations for a specified variable.

Standard 10: Mathematical Reasoning and Problem Solving

- MA.912.A.10.1

Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guessing- and-checking, solving a simpler problem, writing an equation, working backwards, and creating a table.

There may be times when you need to solve an equation, such as

$$
d=r \bullet t \quad \text { distance }=\text { rate } \bullet \text { time }
$$

for one of its variables. When you know both rate and time, it is easy to calculate the distance using the formula above.

If you drive 60 mph for 5 hours, how far will you go? Use the following formula.

$$
d=r \bullet t
$$

Substitute 60 for the rate and 5 for the time to get the following.

$$
\begin{aligned}
& d=60 \bullet 5 \\
& d=300 \text { miles }
\end{aligned}
$$

But what if you know your destination is 385 miles away and that the speed limit is 55 mph ? It would be helpful to have a formula that gives you the amount of time you will need to get there. Rather than trying to remember a new formula for each situation, you could transform the one you already have using the rules you know.

Use the same algebraic rules that we used before, and solve the following.
((U) Remember: t is for time.

$$
d=r \bullet t
$$

We want to get t alone on one side of the equation.

$$
\begin{aligned}
d & =r \bullet t \\
\frac{d}{r} & =\frac{\mathrm{x}^{1} \bullet t}{x_{1}} \\
\frac{d}{r} & =t \quad \text { divide both sides by } r
\end{aligned}
$$

Now see below how dividing distance (385) by rate (55), you get time, 7 hours.

$$
\begin{aligned}
d & =r \bullet t \\
385 & =55 \bullet t \\
\frac{35^{7}}{55_{1}} & =\frac{55^{1} \bullet t}{55_{1}} \\
7 & =t
\end{aligned}
$$

$$
7 \text { hours }
$$

Let's try the examples below.

Example 1

Solve

$$
\begin{aligned}
A & =\frac{1}{2} b h \text { for } b . \\
A & =\frac{1}{2} b h \\
2 A & =b h \quad \longleftarrow \text { multiply both sides by } 2 \\
2 \frac{A}{h} & =b \quad \longleftarrow \text { divide both sides by } h
\end{aligned}
$$

Now let's try a more challenging example.

Example 2

Solve

$$
\begin{aligned}
A & =\frac{1}{2}\left(b_{1}+b_{2}\right) h \text { for } h \\
A & =\frac{1}{2}\left(b_{1}+b_{2}\right) h \\
2 A & =\left(b_{1}+b_{2}\right) h \quad \text { multiply both sides by } 2 \\
\frac{2 A}{\left(b_{1}+b_{2}\right) r} & =h
\end{aligned} \quad \text { divide both sides by }\left(b_{1}+b_{2}\right)
$$

Your turn.

Practice

Solve each formula or equation for the variable given.

1. $a x+b y=c \quad$ Solve for x.
2. $(n-2) 180=x \quad$ Solve for n.
3. $2 a+b=c \quad$ Solve for b.
4. $a(1+b)=c \quad$ Solve for a.
5. $2 a+2 b=4 c \quad$ Solve for b.
6. $4(x+5)=y \quad$ Solve for x.
7. $t=a+(n-1) \quad$ Solve for a.
8. $c=\frac{5}{9}(F-32) \quad$ Solve for F.

Unit Review

Solve these equations. Show essential steps.

1. $4 y+2=30$
2. $-5 x-6=34$
3. $\frac{x}{3}+7=-3$
4. $12=-7-x$
5. $\frac{x}{-4}-2=10$
6. $8-\frac{2 x}{3}=12$
7. $\frac{1 x}{6}+2=8$
8. What is the reciprocal of $-\frac{3}{4}$? \qquad

Number 11 is a gridded-response item.
Write answer along the top of the grid and correctly mark it below.
11. What is the reciprocal of 8 ?

Mark your answer on the grid to the right.

Simplify the following.
12. $-5(x+2)+16$
14. $5 x-7 x$
13. $15+2(x+8)$
15. $-8 x-14+10 x-20$

Solve these equations. Show essential steps.
16. $7 x+3-8 x+12=-6$
17. $7 x+3(x+2)=36$
18. $-\frac{1}{2}(x+10)=-15$
19. $5 x-8=4 x+10$
20. $-8(1-2 x)=5(2 x-6)$

Write an equation and solve for \boldsymbol{x}.

21. The sum of $2 x$ and 7 equals 19 . What is the number?
22. $\frac{1}{2}$ of x decreased by 7 is -10 . What is the number?
23. The difference between 14 and $2 x$ is -10 . What is the number?
24. The perimeter (P) is the distance around a figure, or sum of the lengths of the sides of a figure. The perimeter of the rectangle below is 52 . Write an equation and solve for x.

Answer the following. Show essential steps.
Consecutive odd integers are numbers like 3,5 , and 7 or 15,17 , and 19. Note that you add 2 to the smallest to get the second number and 4 to the smallest to get to the third number. Use this information to solve the following problem.
25. The sum of three consecutive odd integers is 159.

Description		Value
first number second number third number	$x+2$ $x+4$	$=$
sum		$=$

Set up an equation and solve for x. Substitute your answer back into the table to find all answers. Do the numbers add up to 159 ?

Match each inequality with its graph.
\qquad 26. $x \geq 2$
a.

\qquad 27. $x<2$
b.

\qquad 28. $2 \geq x$
c.

29. $x<-2$
d.

Solve and graph.
30. $-5 x+6>-34$

31. $\frac{x}{-2}+6 \leq 0$

Solve the equation for the variable given.
32. $x(1+b)=y \quad$ Solve for x.

Bonus Problems

Answer the following.
33. The sum of the measures of the angles in any triangle is 180 degrees.

Find x, and then find the measure of each angle for the triangle below.

34. Solve and graph this inequality.
$-20<-2 x-14$

Unit 3: Working with Polynomials

This unit emphasizes the skills necessary to add, subtract, multiply, and divide rational expressions, simplify them efficiently, and use strategies necessary for operations involving polynomials.

Unit Focus

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 1: Real and Complex Number Systems

- MA.912.A.1.8

Use the zero product property of real numbers in a variety of contexts to identify solutions to equations.

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.2

Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality.

Standard 4: Polynomials

- MA.912.A.4.1

Simplify monomials and monomial expressions using the laws of integral exponents.

- MA.912.A.4.2

Add, subtract, and multiply polynomials.

- MA.912.A.4.3

Factor polynomial expressions.

- MA.912.A.4.4

Divide polynomials by monomials and polynomials with various techniques, including synthetic division.

Vocabulary

Use the vocabulary words and definitions below as a reference for this unit.
additive inverses \qquad a number and its opposite whose sum is zero
(0); also called opposites

Example: In the equation $3+(-3)=0$, the additive inverses are 3 and -3 .
base (of an exponent)
(algebraic) \qquad the number used as a factor in exponential form
Example: 2^{3} is the exponential form of $2 \times 2 \times 2$. The numeral two (2) is called the base, and the numeral three (3) is called the exponent.
binomial \qquad the sum of two monomials; a polynomial with exactly two terms
Examples: $4 x^{2}+x \quad 2 a-3 b \quad 8 q r s+q r^{2}$
canceling \qquad dividing a numerator and a denominator by a common factor to write a fraction in lowest terms or before multiplying fractions
Example: $\frac{15}{24}=\frac{{ }^{1} \boldsymbol{Z} \cdot 5}{2 \cdot 2 \cdot 2 \cdot \boldsymbol{Z}_{1}}=\frac{5}{8}$
coefficient \qquad the number that multiplies the variables) in an algebraic expression
Example: In $4 x y$, the coefficient of $x y$ is 4 .
If no number is specified, the coefficient is 1 .
common factor \qquad a number that is a factor of two or more numbers
Example: 2 is a common factor of 6 and 12.
commutative propertythe order in which two numbers are added or multiplied does not change their sum or product, respectively
Examples: $2+3=3+2$ or

$$
4 \times 7=7 \times 4
$$

composite numbera whole number that has more than two factors Example: 16 has five factors- $1,2,4,8$, and 16 .
counting numbers
(natural numbers) \qquad the numbers in the set $\{1,2,3,4,5, \ldots\}$
denominator \qquad the bottom number of a fraction, indicating the number of equal parts a whole was divided into Example: In the fraction $\frac{2}{3}$ the denominator is 3 , meaning the whole was divided into 3 equal parts.
distributive propertythe product of a number and the sum or difference of two numbers is equal to the sum or difference of the two products
Examples: $\quad x(a+b)=a x+b x$ $5(10+8)=5 \cdot 10+5 \cdot 8$

exponent

(exponential form)the number of times the base occurs as a factor Example: 2^{3} is the exponential form of $2 \times 2 \times 2$. The numeral two (2) is called the base, and the numeral three (3) is called the exponent.
expression \qquad sentence that combines numbers, operation signs, and sometimes variables
Examples: $4 r^{2} ; 3 x+2 y ; \sqrt{25}$
An expression does not contain equal ($=$) or inequality ($<,>, \leq, \geq$, or \neq) signs.
factora number or expression that divides evenly into another number; one of the numbers multiplied to get a product
Examples: 1, 2, 4, 5, 10, and 20 are factors of 20 and $(x+1)$ is one of the factors of $\left(x^{2}-1\right)$.
factored form \qquad a number or expression expressed as the product of prime numbers and variables, where no variable has an exponent greater than 1

FOIL method \qquad . a pattern used to multiply two binomials; multiply the first, outside, inside, and last terms:

F First terms
O Outside terms
I Inside terms
L Last terms.
Example:

fraction \qquad any part of a whole
Example: One-half written in fractional form is $\frac{1}{2}$.

opposites
two numbers whose sum is zero; also called additive inverses
$\begin{array}{ccc}\text { Examples: }-5+5=0 & \text { or } & \frac{2}{3}+\left(-\frac{2}{3}\right)=0 \\ \uparrow \uparrow & \uparrow \uparrow \uparrow \\ \text { opposites } & \text { opposites }\end{array}$
order of operations
the order of performing computations in parentheses first, then exponents or powers, followed by multiplication and / or division (as read from left to right), then addition and/or subtraction (as read from left to right); also called algebraic order of operations
Example: $5+(12-2) \div 2-3 \times 2=$

$$
5+10 \div 2-3 \times 2=
$$

$$
5+5-6=
$$

$$
10-6=
$$

4
polynomial \qquad a monomial or sum of monomials; any rational expression with no variable in the denominator Examples: $x^{3}+4 x^{2}-x+8 \quad 5 m p^{2}$ $-7 x^{2} y^{2}+2 x^{2}+3$
power (of a number) an exponent; the number that tells how many times a number is used as a factor Example: $\operatorname{In} 2^{3}, 3$ is the power.
prime factorization \qquad writing a number as the product of prime numbers
Example: $24=2 \times 2 \times 2 \times 3=2^{3} \times 3$
prime number \qquad any whole number with only two whole number factors, 1 and itself
Examples: 2, 3, 5, 7, 11, etc.

Unit 3: Working with Polynomials

Introduction

We will see that numbers and expressions can be written in a variety of different ways by simplifying and performing operations on polynomials. Reformatting a number does not change the value of the number. Simplified expressions often lead us to see important information that unsimplified versions do not.

Lesson One Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.2

Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality.

Polynomials

Any expression in which the operations are addition, subtraction, multiplication, and division, and all powers of the variables are natural numbers (also known as counting numbers). These types of expressions are called rational expressions. Rational expressions are fractions whose numerator and / or denominator are polynomials. Examples of rational expressions are as follows:

$$
\frac{x+y}{3 x} \quad x-\frac{1}{x} \quad \frac{2 x+3 y}{x-y}
$$

Any rational expression with no variable in the denominator is called a polynomial. Examples of polynomials are as follows:

$$
\begin{array}{llll}
x^{2} & 7 & 3 y^{2}-2 y+1 & x^{2} y+2 x-y
\end{array}
$$

A term is a number, variable, product, or quotient in an expression.

- If a polynomial has only one term, we call it a monomial, because "mono" means one.

Examples of monomials:

$$
3 \quad a^{3} b
$$

- If a polynomial has exactly two terms, we call it a binomial, because "bi" means two.

Examples of binomials:

$$
x+y \quad 2 x+3 y \quad 3 a^{2}-4 b \quad-3 y+7
$$

- If a polynomial has three terms, we call it a trinomial, because "tri" means three.

Examples of trinomials:

$$
4 x+2 y-3 z \quad x^{2}+3 x+2 \quad 5 a b+2 a-3 b
$$

Notice above that a plus or minus sign separates the terms in all polynomials. Be careful to notice where those signs occur in the expression.

Note: A polynomial is named after it is in its simplest form. For example, $3\left(x+2 y^{3}\right)$ must first be simplified. Therefore, $3\left(x+2 y^{3}\right)=3 x+6 y^{3}$, which is a binomial.

Practice

Use the list below to identify each polynomial. Write the word on the line provided.

binomial	monomial	trinomial
	1.	$3 b^{2}-b$
2.	$4 x^{5}$	
3.	$5 t^{2}-3 t^{5}$	
	4.	$5 x^{3}-4 x^{2}+3 x$
	5.	$3 r^{2} s t^{2}$
	6.	$x-y+3$

Practice

Use the list below to identify each polynomial. Write the word on the line provided.

| binomial | monomial | trinomial |
| :--- | :--- | :--- | :--- |
| | 1. | $3 x^{3}-2 x^{2}+1$ |
| | 2. | $4 x y^{2} z$ |
| | 3. | $a-b+2$ |
| | 4. | $2 a^{2}-a$ |
| | 5. | $6 b^{2}$ |
| | 6. | $3 x^{2}-5 y^{2}$ |
| | | |
| | | |
| | | |

Match each definition with the correct term. Write the letter on the line provided.
\qquad 1. a monomial or sum of monomials
2. a polynomial with only one term
3. an exponent; the number that tells how many times a number is used as a factor
4. any symbol, usually a letter, which could represent a number
5. a polynomial with exactly three terms
E. polynomial
6. a mathematical phrase or part of a number sentence that combines numbers, operation signs, and sometimes variables
7. a polynomial with exactly two terms
F. power (of a number)
\qquad
G. trinomial
8. the numbers in the set
H. variable $\{1,2,3,4,5, \ldots\}$

Lesson Two Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.2

Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality.

Addition and Subtraction of Polynomials

Polynomials with exactly the same variable combinations can be added or subtracted. For example, $7 x y$ and $3 x y$ have the same variable combination. We call these like terms.

$$
7 x y+3 x y=10 x y \quad \text { and } \quad 7 x y-3 x y=4 x y
$$

A polynomial is in simplest form if it contains no grouping symbols (except a fraction bar) and all like terms have been combined.

Polynomials can be arranged in any order. In standard form, polynomials are arranged from left to right, from greatest to least degree of power. For example:

$$
x^{7}-x^{2}+8 x
$$

Polynomials can be added or subtracted in vertical (\downarrow) or horizontal (\longleftrightarrow) form.

Addition

vertical form

$$
\left(3 y^{2}+2 y+3\right)+\left(y^{2}+1\right)
$$

Align like terms in columns and add.

$$
\begin{aligned}
& \begin{array}{l}
\text { write degrees of powers } \\
\text { left to right from greatest } \\
\text { to least }
\end{array}
\end{aligned}
$$

(+) $\frac{y^{2}+1}{4 y^{2}+2 y+4} \longleftarrow$ adign like terms

horizontal form

$$
\left(3 y^{2}+2 y+3\right)+\left(y^{2}+1\right)
$$

Regroup and add like terms.

$$
\begin{gathered}
\left(3 y^{2}+y^{2}\right)+(2 y)+(3+1)=\longleftarrow \text { group like terms } \\
4 y^{2}+2 y+4 \longleftarrow \text { add like terms }
\end{gathered}
$$

Subtraction

You subtract a polynomial by adding its additive inverse or opposite. To do this, multiply each term in the subtracted polynomial by -1 and add.

polynomial	additive inverse
$-8 y+4 x$	$8 y-4 x$
$3 q^{2}-6 r+11$	$-3 q^{2}+6 r-11$
$2 a+7 b-3$	$-2 a-7 b+3$

vertical form

$$
\left(3 y^{2}-2 y+3\right)-\left(y^{2}-1\right)
$$

Align like terms in columns and subtract by adding the additive inverse.

(《) Remember: $-y^{2}=-1 y^{2}$

horizontal form

$$
\left(3 y^{2}-2 y+3\right)-\left(y^{2}-1\right)
$$

Subtract by adding additive inverse and group like terms.

$$
\left.\begin{array}{rl}
{\left[3 y^{2}+(-2 y)+3\right]+\left[\left(-y^{2}\right)+1\right]} & =\longleftarrow \\
{\left[3 y^{2}+\left(-y^{2}\right)\right]+(-2 y)+(3+1)} & =\longleftarrow \text { add additive inverse of } 2 y, \text { which } \\
\text { is }-2 y, \text { and } y^{2}-1, \text { which is }-y^{2}+1
\end{array}\right) \text { group like terms } .
$$

vertical form
Subtract $2 t^{2}-3 t+4$ from the sum of $t^{2}+t-6$ and $3 t^{2}+2 t-1$.
$\left(t^{2}+t-6\right)+\left(3 t^{2}+2 t-1\right)-\left(2 t^{2}-3 t+4\right)$

$\quad \begin{array}{l}\text { write degrees of powers } \\ \text { left to right from } \\ \text { greatest to least } \\ t^{2}+t-6 \\ 3 t^{2}+2 t-1 \longleftarrow \\ \text { (-) } 2 t^{2}-3 t+4 \\ \text { align like terms } \\ \text { add additive inverse }\end{array} \longrightarrow \begin{array}{r}\longrightarrow \\ t^{2}+t-6 \\ 3 t^{2}+2 t-1\end{array}$
$(+) t^{2}+3 t-4$
$2 t^{2}+6 t-11$

horizontal form

Subtract $2 t^{2}-3 t+4$ from the sum of $t^{2}+t-6$ and $3 t^{2}+2 t-1$.
$\left(t^{2}+t-6\right)+\left(3 t^{2}+2 t-1\right)-\left(2 t^{2}-3 t+4\right)$

$\left(t^{2}+3 t^{2}-2 t^{2}\right)+(t+2 t+3 t)+(-6-1-4)=\longleftarrow$ group like terms
$2 t^{2}+6 t-11 \longleftarrow$ combine like terms

Practice

Write each expression in simplest form. Use either the horizontal or vertical form. Refer to examples on pages 206-208 as needed. Show essential steps.

Remember: Write answers with the degree of powers arranged from left to right and from greatest to least.

Example: $\left(3 y^{2}-2 y+3\right)-\left(y^{2}-1\right)$
horizontal form

1. $3 a b^{2}-5 a^{2} b+5 a b^{2}$
2. $\left(2 x^{2}-3 x+7\right)-\left(3 x^{2}+3 x-5\right)$
3. $\left(2 x^{3}-3 x^{2}+2 x\right)+\left(4 x-2 x^{2}-3 x^{3}\right)$
4. $\left(4 a^{2}+6 a-6\right)+\left(3 a^{2}-2 a+4\right)-\left(5 a^{2}-5 a-9\right)$
5. $\left(-3 y^{3}+4 y^{2}+6 y\right)-\left(y^{3}-2 y^{2}+y+6\right)+\left(4 y^{3}+2 y^{2}-4 y-1\right)$
6. $\left(a^{3}-3 a^{2} b-4 a b^{2}+6 b^{3}\right)-\left(a^{3}+a^{2} b-2 a b^{2}-5 b^{3}\right)$
7. $3 a+[5 a-(a+3)]$
8. $\left[x^{2}-(2 x-3)\right]-\left[2 x^{2}+(x-2)\right]$
9. $y-\{y-[x-(2 x-y)]+2 y\}$

Example: Subtract $2 t^{2}-3 t+4$ from the sum of $t^{2}+t-6$ and $3 t^{2}+2 t-1$.

11. Subtract $4 x^{2}-3 x+3$ from the sum of $x^{2}-2 x-3$ and $x^{2}-4$.
12. Subtract $2 t^{2}-3 t+5$ from the sum of $4 t^{2}-3 t+4$ and $-t^{2}+5 t+7$.

Practice

Write each expression in simplest form. Use either the horizontal or vertical form. Refer to examples on previous practice and pages 206-208 as needed. Show essential steps.

1. $5 x y^{2}+2 x^{2} y-6 x y^{2}$
2. $\left(6 a^{2}-4 a-3\right)-\left(5 a^{2}+2 a+1\right)$
3. $\left(3 y^{3}-4 y^{2}+9 y\right)+\left(5 y^{3}-6 y^{2}+6\right)$
4. $\left(8 x^{2}+2 x-6\right)-\left(4 x^{2}-3 x+9\right)+\left(5 x^{2}+2 x-3\right)$
5. $\left(8 a^{3}-2 a^{2}+3 a\right)-\left(9 a^{3}+5 a-4\right)+\left(6 a^{2}-8 a+5\right)$
6. $\left(x^{3}-4 x^{2} y-6 x y^{2}+2 y^{3}\right)-\left(x^{3}+6 x^{2} y-9 x y^{2}+6 y^{3}\right)$
7. $5 x+[3 x-(x+2)]$
8. $b^{2}-[4 b-(b+6)]$
9. Subtract $3 x^{2}+2 x-1$ from the sum of $8 x^{2}-6 x+9$ and $x^{2}-8$.
10. Subtract $2 a^{2}-6 a+4$ from the sum of $a^{2}+4$ and $4 a^{2}-9 a+8$.

Lesson Three Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 1: Real and Complex Number Systems

- MA.912.A.1.8

Use the zero product property of real numbers in a variety of contexts to identify solutions to equations.

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.2

Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality.

Standard 4: Polynomials

- MA.912.A.4.1

Simplify monomials and monomial expressions using the laws of integral exponents.

Multiplying Monomials

First Law of Exponents

For example, $a^{5} a^{3}$ means a^{5} times a^{3} or (aaaaa)(aaa). By counting the factors of a, which is 8 , you can see that

$$
a^{5} a^{3}=a^{8} .
$$

This is an example of the first law of exponents, which states that $a^{x} a^{y}=a^{x+y}$.
Below are other examples.

$$
x^{2} x^{3}=x^{5} \quad x x^{4} x^{5}=x^{10} \quad b^{4} b^{2} b^{3}=b^{9}
$$

When there are coefficients (the numbers you multiply the variables by), you must multiply those first and then use the first law of exponents. In the expression $8 x^{2} y$, the coefficient is 8 . In the expression $3 x y^{4}$, the coefficient is 3 . If no number is specified, the coefficient is 1 .

If we multiply $2 x^{2} y$ and $3 x y^{4}$, this would be

- The coefficients are multiplied.

$$
2 \cdot 3=6
$$

- The exponents are added.

If we multiply $7 b$ and $-b^{3}$, this would be

$$
\begin{aligned}
& (7 b)\left(-b^{3}\right)=(7 b)\left(-1 b^{3}\right) \\
& -7 b^{4}
\end{aligned}
$$

- The coefficients are multiplied.

$$
7 \bullet-1=-7
$$

- The exponents are added. The term $-b^{3}$ is understood to be $-1 b^{3}$.

$$
\begin{aligned}
b \bullet-b^{3} & =-b^{4} \\
1 b \bullet-1 b^{3} & =-1 b^{4}=-b^{4}
\end{aligned}
$$

Remember: Use the rules for the order of operations. Complete multiplication as it occurs, from left to right, including all understood coefficients.

Example

$-x^{3}\left(x^{4}\right)(5 x)\left(-2 x^{4}\right)=$
$(-1)(1)(5)(-2) \bullet\left(x^{3} x^{4} x^{1} x^{4}\right)=\longleftarrow$ multiply the coefficients left to right $10 \cdot x^{3+4+1+4}=\quad \longleftarrow$ add the exponents $10 \cdot x^{12}=$ $10 x^{12}$

Write each product as a polynomial in simplest form.
(II) Remember: Multiply the coefficients and add the exponents.

$$
\begin{gathered}
\text { Example: }\left(7 a^{2}\right)\left(5 a^{3} b^{4}\right)= \\
35 a^{5} b^{4}
\end{gathered}
$$

1. $(6 t)\left(-3 t^{3}\right)$
2. $(5 x)\left(-x^{4}\right)$
3. $\left(-6 r^{2} s\right)\left(4 r^{2} s^{3}\right)$
4. $(-5 a)\left(a b^{3}\right)\left(-3 a^{2} b c\right)$
5. $\left(y^{2} z\right)\left(-3 x^{2} z^{2}\right)\left(-y^{4} z\right)$
6. $-a^{2}\left(a b^{2}\right)(3 a)\left(-2 b^{3}\right)$
7. $(-t)^{2}\left(2 t^{2}\right)(5 t)^{2}$

Hint: Notice with $(-t)^{2}$ and $(5 t)^{2}$, the exponent 2 is placed on the outside of the grouping symbols, the parentheses. Use the distributive property and raise every term in the parentheses to the exponent.

$$
\text { Example: } \begin{aligned}
(-t)^{2} & =(-t)(-t)=t^{2} \\
(5 t)^{2} & =(5 t)(5 t)=25 t^{2}
\end{aligned}
$$

8. $\left(3 x^{2}\right)\left(-5 x^{3} y^{2}\right)(0)(-4 y)^{2}$

Hint: Notice the zero (0). The zero property of multiplication, also known as the zero product property, states that any number multiplied by 0 is 0 .

Practice

Write each product as a polynomial in simplest form.

1. $(8 x)\left(-2 x^{2}\right)$
2. $(5 a)\left(-a^{6}\right)$
3. $\left(-4 x^{2} y\right)\left(3 x^{3} y^{2}\right)$
4. $(-6 b)\left(a b^{4}\right)\left(-4 a^{2} b c^{2}\right)$
5. $\left(x^{3} y^{2}\right)\left(-2 x^{2} y\right)\left(-x^{4} y^{2}\right)$
6. $-s^{3}\left(s^{2} t^{2}\right)(4 s)\left(-2 t^{4}\right)$
7. $(-a)^{2}\left(4 a^{2}\right)(3 a)^{2}$
8. $(6 x)^{2}\left(-2 x^{2} y^{3}\right)(0)(-2 x)^{2}$

Lesson Four Purpose

Reading Process Strand
Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.2

Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality.

Standard 4: Polynomials

- MA.912.A.4.1

Simplify monomials and monomial expressions using the laws of integral exponents.

- MA.912.A.4.4

Divide polynomials by monomials and polynomials with various techniques, including synthetic division.

Dividing Monomials

Second Law of Exponents

When dividing monomials it is important to remember that

$$
\frac{a^{5}}{a^{3}}=\frac{a a a a a}{a a a} .
$$

It is also important to remember the following.

$$
\begin{aligned}
& \frac{a}{a}=1 \\
& a^{0}=1
\end{aligned}
$$

Therefore, the three factors of a in the denominator cancel three of the five factors of a in the numerator. This leaves $a \bullet a$ or a^{2} in the numerator and 1 in the denominator.
(c) 3 Remember: To cancel means to divide a numerator (the top part of the fraction) and a denominator (the bottom part of the fraction) by a common factor. This is done in order to write the fraction in lowest terms or before multiplying the fractions.
numerator
$\frac{\text { açaa }}{\text { axa }}=\frac{a a}{1}$ or $\frac{a^{2}}{1}=a^{2}$
denominator

Another way to look at this is

$$
\frac{a^{5}}{a^{3}}=a^{5-3}=a^{2}
$$

This is an example of the second law of exponents, which states that

$$
\frac{a^{x}}{a^{y}}=a^{x-y}
$$

as long as $a \neq 0$.

Second Law of Exponents
You divide exponential forms by subtracting the exponents. $9^{7} \div 9^{3}=9^{7-3}=9^{4}$ Remember: The fraction bar represents division. So, $\frac{8^{4}}{8^{2}}$ means $8^{4} \div 8^{2}$. $\frac{9^{7}}{9^{3}}=9^{7-3}=9^{4}$ $\frac{a^{m}}{a^{n}}=a^{m-n}$

If the exponents are the same,

$$
\begin{aligned}
& \frac{a^{x}}{a^{x}}=1 \text { and } \\
& \frac{a^{x}}{a^{x}}=a^{x-x}=a^{0}=1 .
\end{aligned}
$$

Any number (except zero) raised to the zero power is equal to 1 .

$$
a^{0}=1
$$

Example

$$
\begin{aligned}
\frac{x^{4} b^{3}}{x b^{3}} & = \\
x^{4-1} \bullet \frac{b^{3}}{b^{3}} & =\longleftarrow \frac{b^{3}}{b^{3}}=1 \\
x^{3} \cdot 1 & = \\
x^{3} &
\end{aligned}
$$

When there are coefficients with variables, simply reduce those as you do when working with fractions.

Example

$$
\begin{aligned}
& \frac{12 a^{3} b^{5}}{-4 a b^{3}}=\longleftarrow \frac{12^{3}}{-x_{-1}}=\frac{3}{-1}=-3 \\
&-3 a^{3-1} b^{5-3}= \\
&-3 a^{2} b^{2}
\end{aligned}
$$

Practice

Write each quotient as a polynomial in simplest form. Refer to examples on pages 223-225 as needed. Show essential steps.

1. $\frac{6 x^{3} y^{4}}{3 x y}$
2. $\frac{14 c^{4} d^{3}}{-7 c^{4} d^{2}}$
3. $\frac{100 m^{5} n}{-20 m^{3} n}$
4. $\frac{-22 a^{2} b c^{5}}{11 a b c}$
5. $\frac{12 r^{2} s t^{3}}{-3 r s t^{3}}$
6. $\frac{a^{5} b^{6} c^{7}}{a^{4} b^{3} c^{2}}$
7. $\frac{(t+4)^{5}}{(t+4)^{2}}$

Hint: Notice that the exponents 5 and 2 are on the outside of the grouping symbols, the parentheses. Since the bases $(t+4)$ are the same, just subtract the exponents. Do not raise each term in the parentheses to the exponent.
8. $\frac{9(x-3)^{3}}{-3(x-3)^{2}}$

Practice

Write each quotient as a polynomial in simplest form. Refer to examples on pages 223-225 as needed. Show essential steps.

1. $\frac{8 a^{2} b^{4}}{4 a b^{2}}$
2. $\frac{16 x^{5} y^{4}}{-8 x^{3} y}$
3. $\frac{-36 a^{2} b^{5} c^{4}}{3 a b^{2} c}$
4. $\frac{48 x^{2} y z^{3}}{12 x y z}$
5. $\frac{20 a^{2} b c^{3}}{10 a b c^{2}}$
6. $\frac{x^{5} y^{7} z^{6}}{x^{2} y^{2} z^{6}}$
7. $\frac{(x+1)^{5}}{(x+1)^{3}}$
8. $\frac{10(x+7)^{4}}{-5(x+7)^{2}}$

Lesson Five Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.2

Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality.

Standard 4: Polynomials

- MA.912.A.4.1

Simplify monomials and monomial expressions using the laws of integral exponents.

- MA.912.A.4.2

Add, subtract, and multiply polynomials.

- MA.912.A.4.3

Factor polynomial expressions.

Multiplying Polynomials

Using the Distributive Property to Multiply a Monomial and a Trinomial

Multiplication of a monomial and a polynomial is simply an extension of the distributive property. Make sure that every term in the parentheses is multiplied by the term in front of the parentheses.

Typically, mathematicians like to put things in order. They will rearrange the variables in the answer above so that the variables in each term are alphabetical. Therefore, the final answer would be as follows.

$$
\begin{aligned}
& 6 x a+9 x b-12 x c= \\
& 6 a x+9 b x-12 c x
\end{aligned}
$$

Using the FOIL Method to Multiply Two Binomials

When we multiply two polynomials, we extend the distributive property even further to make sure that every term in the first set of parentheses is multiplied by every term in the next set of parentheses.

Look carefully at the product below.

$$
(a+b)(x-y)=a x-a y+b x-b y
$$

Notice that both x and y were multiplied by a, and then by b. This is called the FOIL method because

- the two First terms (a and x) are multiplied
- then the two Outside terms (a and $-y$) are multiplied
- then the two Inside terms (b and x) are multiplied and lastly
- the two Last terms (b and $-y$) are multiplied together.

F First terms
O Outside terms
I Inside terms
L Last terms

$$
\underbrace{1 \text { First }}_{a+b}(x-y)=a x-a y+b x-b y
$$

It is important to be orderly when you multiply to ensure that you don't leave out a step. Also, be very careful to watch the positive (+) and negative (-) signs as you work.

Special patterns often occur. Knowing these may help you.

$$
\begin{aligned}
&(a+b)^{2} \neq a^{2}+b^{2} \longleftarrow \begin{array}{l}
\text { To write this expression in } \\
\text { simplest form, the power of } 2 \text { is } \\
\\
\text { not simply distributed over } \\
\\
\\
a+b \text {. Instead... }
\end{array} \\
&(a+b)^{2}=(a+b)(a+b) \longleftarrow \begin{array}{l}
(a+b)^{2} \text { is multiplied by itself, } \\
(a+b)(a+b) .
\end{array}
\end{aligned}
$$

Using the Distributive Property to Multiply Any Two Polynomials
Let's look at using the distributive property to do the following.

- multiply a binomial and a trinomial in horizontal form
- multiply two trinomials in horizontal form
- multiply polynomials in vertical form

Example 1

Find the product of a binomial and a trinomial in horizontal form.

Example 2

Find the product of two trinomials in horizontal form.

Example 3

Find the product of polynomials in vertical form.

$$
\left(c^{3}-8 c^{2}+9\right)(3 c+4)=
$$

Note: There is no c term in $c^{3}-8 c^{2}+9$, so $0 c$ is used as a placeholder.

$$
\begin{array}{r}
c^{3}-8 c^{2}+0 c+9 \\
(\mathrm{x}) \quad 3 c+4 \\
4 c^{3}-32 c^{2}+0 c+36 \\
3 c^{4}-24 c^{3}+0 c^{2}+27 c \\
3 c^{4}-20 c^{3}-32 c^{2}+27 c+36
\end{array}
$$

Practice

Write each expression as a polynomial in simplest form. Refer to examples on pages 231-235 as needed. Show essential steps.

Example: $-3(2 x+4 y-z)=\longleftarrow$ distributive property $-6 x-12 y+3 z$

1. $2 a(a+3 b)$
2. $-5 x(3 x-2 y+6 z)$

Example: $(x-4)^{2}=$

3. $(x+4)^{2}$
4. $(x+8)^{2}$

7. $(2 x+5)(3 x-6)$
8. $(3 t-1)(3 t+5)$
9. $(3 g-4)(2 g-3)$

Example:

horizontal form

vertical form

$$
\begin{array}{r}
x^{2}+2 x-3 \\
(\mathrm{x}) \frac{x-4}{-4 x^{2}-8 x+12} \\
\frac{x^{3}+2 x^{2}-3 x}{x^{3}-2 x^{2}-11 x+12}
\end{array}
$$

Notice the order of the terms in the answer above. The values of the exponents are in decreasing order: $x^{3}, x^{2}, x^{1}, x^{0}$.
10. $(x+2)\left(x^{2}-2 x+3\right)$
11. $\left(x^{2}-3 x+5\right)(x-6)$
12. $\left(2 a^{2}-3 a+1\right)\left(3 a^{2}+2 a+1\right)$

Practice

Write each expression as a polynomial in simplest form. Refer to examples on pages 231-235 as needed. Show essential steps.

Use the distributive property.

1. $6 s\left(s^{2}-3 s+2\right)$
2. $2 y^{3}\left(3 y^{2}-4 y+7\right)$

Use the FOIL method.
3. $(x-3)^{2}$
4. $(x-10)^{2}$
5. $(b+5)(b+4)$
6. $(c-5)(c+5)$
7. $(2 z-3)(4 z+2)$

Use the distributive property.
8. $(b+5)\left(b^{2}+4 b-9\right)$
9. $\left(y^{2}-3 y+7\right)\left(y^{2}+4\right)$
10. $(a+3)(a-4)(a-5)$

Hint: Multiply the first two binomials. Then multiply that product by the third binomial. Use either the vertical or horizontal form to do this.

Lesson Six Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.2

Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality.

Standard 4: Polynomials

- MA.912.A.4.1

Simplify monomials and monomial expressions using the laws of integral exponents.

- MA.912.A.4.2

Add, subtract, and multiply polynomials.

- MA.912.A.4.3

Factor polynomial expressions.

Factoring Polynomials

If we look at the product $a b c$, we know a, b, and c are factors of this product. In the same way, 2 and 3 are factors of 6 . Other factors of 6 are 6 and 1.
(c) Remember: A factor is a number or expression that divides evenly into another number.
factors of $a b c=a, b$, and c
factors of $6=1,2,3$, and 6
Some numbers, like 5, have no factors other than the number itself and the number 1 . These numbers are called prime numbers. A prime number is any whole number $\{0,1,2,3,4, \ldots\}$ with only two factors, 1 and itself. The prime numbers less than 20 are $2,3,5,7,11,13,17$, and 19 .
prime numbers $<20=2,3,5,7,11,13,17$, and 19
Natural numbers greater than 1 that are not prime are called composite numbers. A composite number is a whole number with more than two factors. For example, 16 has five factors, $1,2,4,8$, and 16 . Therefore, $4,6,8$, $9,10,12,14,15,16$, and 18 are the composite numbers less than 20.
composite numbers $<20=4,6,8,9,10,12,14,15,16$, and 18
Every composite number can be written as a product of prime numbers. We can find this prime factorization by factoring the factors and repeating this process until all factors are primes.

For example, find the prime factorization of 24 and express it in completely factored form.

Factoring a Positive Number-
numbers greater than zero

	Method One		Method Two
	24		24
Use a factor	4	or	6 - 4
tree.	$3^{\prime} \cdot 2 \cdot 2 \cdot 2$	or	$(3 \cdot 2)(2 \cdot 2)$

$$
24=3 \cdot 2 \cdot 2 \cdot 2
$$

Factoring a Negative Numbernumbers less than zero

Method One

Method Two
or

$$
\begin{gathered}
-24 \\
-6 \cdot 4 \\
(-3 \cdot 2)(2 \cdot 2)= \\
-3 \cdot 2 \cdot 2 \cdot 2
\end{gathered}=
$$

An Alternate Method for Factoring a Positive Number

Here is an alternate method for factoring a positive number called upsidedown dividing. Divide by prime numbers starting with the number 2 .

$$
\begin{array}{r}
2 \lcm{24} \\
212 \\
2 \lcm{6} \\
3 \lcm{3} \\
\hline 1
\end{array}
$$

The prime factorization is down the left side.

$$
2 \cdot 2 \cdot 2 \cdot 3 \text { or } 2^{3} \bullet 3
$$

To factor polynomials, you must look carefully at each term and decide if there is a factor that is common to each term. If there is, we basically "undistribute" or factor out that greatest common factor (GCF). Look at the example below.

$$
\begin{aligned}
6 x^{3}-12 x^{2}+3 x=\longleftarrow & \begin{array}{l}
\text { Notice that each term can be divided by } 3 \text { and } \\
\\
\text { x. So, } 3 x \text { is the greatest factor these terms } \\
\text { have in common. Therefore, } 3 x \text { is the } G C F \text { of } \\
\\
6 x^{3}-12 x^{2}+3 x .
\end{array} \\
3 x\left(2 x^{2}-4 x+1\right) \longleftarrow & \text { undistribute the } 3 x
\end{aligned}
$$

All of the terms and symbols must be written to make sure that your new expression is exactly equal to the original one. You can check your work by distributing the $3 x$ to everything within the parentheses to see if it matches the original expression.

(《) Remember: $(a+b)=(b+a)$ The commutative property of addition-numbers can be added in any order and the sum will be the same.

The same is not true for $a-b$. The commutative property does not work with subtraction.
$a-b$ does not equal $b-a$
$(a-b)=-1(b-a) \quad a-b$ is understood as $a-{ }^{+} b$, therefore,
$a-b$ equals $-1(b-a)$

Practice

Express each integer $\{\ldots,-\mathbf{3}, \mathbf{- 2 , - 1 , 0 , 1 , 2 , 3 , . . . \}}$ in completely factored form. If the integer is a prime number, write prime.

1. 8
2. 18
3. -16
4. 23
5. 56

Factor the following. Show essential steps.

Example: $18 x^{3} y-24 x^{2} y^{2}=\quad \longleftarrow$ Find the GCF, which is $6 x^{2} y$, and $6 x^{2} y(3 x-4 y)$ undistribute it.
6. $3 a-9$
7. $2 x^{2} y^{2}+3 x y-4 x y^{3}$
8. $3 m^{4}+6 m^{3}-12 m^{2}$
9. $a y^{3} b+a^{2} y^{2}+a b$

Example: $x(b+2)-7(b+2)$

10. $a(a+3)-6(a+3)$
11. $2 x(x+5)-3(x+5)$
12. $5(y-7)+z(y-7)$

Practice

Express each integer $\{\ldots,-\mathbf{3}, \mathbf{- 2 , - 1 , 0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots$.$\} in completely factored form.$ If the integer is a prime number, write prime.

1. 12
2. 15
3. -25
4. 31
5. 72

Factor the following. Show essential steps.
6. $4 b^{2}+12 b$
7. $y^{4}-y^{3}+y$
8. $15 r^{2} s+9 r s^{2}-12 r s$
9. $16 x^{2} y z^{3}+8 x^{3} y^{2} z^{2}-24 x^{4} y^{2} z$
10. $y(y-4)+4(y-4)$
11. $5 x(3 a+1)-4(3 a+1)$
12. $3 a(2 x-y)+4 a(2 x-y)$

Practice

Match each definition with the correct term. Write the letter on the line provided.
\qquad 1. the largest of the common factors of two or more numbers
2. any whole number with only two whole number factors, 1 and itself
3. the order in which two numbers are added or multiplied does not change their sum or product, respectively
4. a number or expression expressed as the product of prime numbers and variables, where no variable has an exponent greater than 1
5. writing a number as the product of prime numbers
6. a whole number that has more than two factors
\qquad
A. commutative property
B. composite number
D. greatest common factor (GCF)
E. prime factorization
C. factored form
F. prime number

Lesson Seven Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.2

Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality.

Standard 4: Polynomials

- MA.912.A.4.1

Simplify monomials and monomial expressions using the laws of integral exponents.

- MA.912.A.4.2

Add, subtract, and multiply polynomials.

- MA.912.A.4.3

Factor polynomial expressions.

- MA.912.A.4.4

Divide polynomials by monomials and polynomials with various techniques, including synthetic division.

Factoring Quadratic Polynomials

Polynomials that are written in the format $a x^{2}+b x+c$ can be factored into two binomials. The following six-step method may help, especially if you have had difficulty with factoring in the past.

Example 1

Format $a x^{2}+b x+c$

Step 1		\longleftarrow Write the problem. Factor out common factors, if there are any. Identify a, b, and c. $a=6, b=17, \text { and } c=5$
Step 2	$\begin{aligned} a c & =6 \bullet 5 \\ & =30 \end{aligned}$	\longleftarrow Multiply a and c.
Step 3	$6 x^{2}+\underbrace{2 x+15 x}+5$	\longleftarrow Rewrite the problem using factors of $a c$. The factors you choose must combine (add or subtract) to equal the middle term. Note: $2 x+15 x=17 x$, which is the same as the original middle term.

Step $4 \quad\left(6 x^{2}+2 x\right)+(15 x+5) \longleftarrow$ Group the first two terms and the last two terms.

Step $52 x(3 x+1)+5(3 x+1) \longleftarrow$ Factor out the greatest common factor for each term. You will always be left with a matching pair of factors. Notice the factors of $(3 x+1)$. If you do not have a matching pair, double-check your work at this point!

Step $6 \quad(3 x+1)(2 x+5) \longleftarrow$ Write down the common factor $(3 x+1)$. Then write the "leftovers" in parentheses. You have succeeded!

The next example shows how to handle minus signs. Watch carefully!

Example 2

Format $a x^{2}+b x+c$
Step $14 x^{2}-5 x+1 \longleftarrow$ Write the problem. Factor out common factors, if there are any. Identify a, b, and c.

$$
a=4, b=-5, \text { and } c=1
$$

Step $2 a c=4 \bullet 1 \leftarrow$ Multiply a and c.

Step $34 x^{2}-4 x-x+1=\longleftarrow$ Rewrite the problem using factors of ac. The $4 x^{2}+-4 x+-x+1=\quad$ factors you choose must combine (add or subtract) to equal the middle term.

Step $4\left(4 x^{2}+-4 x\right)+(-x+1)=\longleftarrow$ Group the first two terms and the last two terms. If the second term in step 3 is followed by a minus sign, this requires a sign change to each term in the second group.

Step $54 x(x-1)+-1(x-1)=\longleftarrow$ Factor out the greatest common factor for each term. You must always have a common factor, even if it is only a 1 . You will always be left with a matching pair of factors. Notice the factors of $(x-1)$. If you do not have a matching pair, double-check your work at this point!

Step $6 \quad(x-1)(4 x-1) \longleftarrow$ Write down the common factor $(x-1)$. Then write the "leftovers" in parentheses. You have succeeded!

Now, you try one!

Example 3

Now you are ready to practice some problems on your own.

Practice

Factor completely. Show essential steps.

Format $a x^{2}+b x+c$
Example: $8 x^{2}+12 x-8=\quad \longleftarrow a=2, b=3$, and $c=-2$

$$
4\left(2 x^{2}+3 x-2\right)=\quad \longleftarrow a c=-4
$$

$$
4\left(2 x^{2}+4 x-x-2\right)=
$$

$$
4[2 x(x+2)-1(x+2)]=
$$

$$
4[(x+2)(2 x-1)]
$$

1. $6 b^{2}+17 b+5$
2. $3 x^{2}-8 x+5$
3. $3 a^{2}+7 a-6$
4. $2 y^{2}+7 y+5$
5. $8 x^{2}-6 x-9$
6. $10 a^{2}+11 a-6$
7. $3 x^{2}+4 x+1$
8. $4 a^{2}-5 a+1$
9. $2 r^{2}+3 r-2$

Practice

Factor completely. Show essential steps.

Format $a x^{2}+b x+c$
Example: $x^{2}-2 x-3=\quad \longleftarrow a=1, b=-2$, and $c=-3$
$x^{2}-3 x+x-3=\longleftarrow a c=-3$
$\left(x^{2}-3 x\right)+(x-3)=$ $x(x-3)+1(x-3)=$ $(x-3)(x+1)$

1. $a^{2}-a-6$
2. $y^{2}+7 y+12$
3. $x^{2}+7 x+10$
4. $a^{2}-2 a+15$
5. $x^{2}+6 x+5$

Take opportunities to practice factoring problems like the ones in this practice, and use the factors of the middle term with trial and error tactics.

Factor completely. Show essential steps.

Format $a x^{2}+b x+c$

Example: $x^{2}-4=\longleftarrow$ insert a middle term of $0 x$

$$
x^{2}+0 x-4=\quad \quad \begin{aligned}
& a c=-4
\end{aligned}
$$

$x^{2}+2 x-2 x-4=\longleftarrow$ rewrite b as $+2 x-2 x$
$\left(x^{2}+2 x\right)-(2 x+4)=\longleftarrow$ group the first two and last two terms
(I) Remember: If the second term is followed by a minus sign, this requires a sign change to each term in the second group.
$x(x+2)-2(x+2)=\longleftarrow$ take out common factors
$(x+2)(x-2) \quad \longleftarrow$ rewrite using common factors

1. $a^{2}-16$
2. $x^{2}-9$
3. $b^{2}-25$
4. $y^{2}-81$
5. $x^{2}-36 y^{2}$

Notice that the final terms in the problems above were all perfect squares and the answers fit the pattern $a^{2}-b^{2}=(a+b)(a-b)$. Use this shortcut whenever possible. However, if you are unsure, you can always use the six-step method used in the previous practices.

C(I) Remember: A perfect square is a number whose square root is a whole number.
Example: 25 is a perfect square because $5 \times 5=25$.

Practice

Factor completely. Show essential steps.

Format $a x^{2}+b x+c$
Example: $8 x^{2}+12 x-8=\quad \longleftarrow a=2, b=3$, and $c=-2$ $4\left(2 x^{2}+3 x-2\right)=$
$\longleftarrow a c=-4$
$4\left(2 x^{2}+4 x-x-2\right)=$ $4[2 x(x+2)-1(x+2)]=$ $4[(x+2)(2 x-1)]$

1. $2 x^{2}+3 x-20$
2. $15 x^{2}+13 x+2$
3. $6 x^{2}-7 x-10$
4. $x^{2}+6 x+8$
5. $x^{2}+x-12$

Practice

Factor completely. Show essential steps.

Format $a x^{2}+b x+c$
Example: $x^{2}-2 x-3=\quad \leftarrow a=1, b=-2$, and $c=-3$
$x^{2}-3 x+x-3=\longleftarrow a c=-3$
$\left(x^{2}-3 x\right)+(x-3)=$
$x(x-3)+1(x-3)=$
$(x-3)(x+1)$

1. $x^{2}-3 x-4$
2. $x^{2}-3 x+2$
3. $x^{2}-8 x+15$

4. $x^{2}-64$
5. $r^{2}-9$
6. $y^{2}-100$
7. $a^{2}-25 b^{2}$

Practice

Use the list below to write the correct term for each definition on the line provided.

binomial coefficient composite number factor	like terms monomial polynomial prime number	rational expression simplest form (of an expression) trinomial

1. any whole number with only two whole number factors, 1 and itself
2. the number that multiplies the variable(s)
3. a polynomial with exactly two terms
4. a polynomial with only one term
5. polynomials with exactly the same variable combinations.
6. a polynomial with exactly three terms
7. any rational expression with no variable in the denominator
8. an expression that contains no grouping symbols (except a fraction bar), and all like terms have been combined
9. one of the numbers multiplied to get a product
10. a fraction whose numerator and / or denominator are polynomials
11. a whole number that has more than two factors

Use the list below to identify each polynomial. Write the word on the line provided.

binomial monomial trinomial

\qquad 1. $a+b+c$
2. $8 x y^{3} z^{2}$
3. $4 a^{2}-b$

Write each expression in simplest form. Show essential steps.
4. $3 a+[5 a-(2 a-b)]$
5. $\left(x^{3}-4 x^{2} y+5 x y^{2}+4 y^{3}\right)-\left(-2 x^{3}+x^{2} y+6 x y^{2}-5 y^{3}\right)$
6. $8-[2 x-(3+5 x)+4]$
7. $\left(3 x^{2}\right)(-6 x)^{2}$
8. $(-a)^{2}\left(4 a^{2}\right)(-2 a)^{3}$
9. $(5 x)^{2}\left(-2 x^{2} y^{2}\right)(4 x)$
10. $\frac{-16 a^{2} b^{5} c^{4}}{4 a^{2} b c^{3}}$
11. $\frac{a^{5} b^{2} c^{4}}{a^{5} b c^{3}}$

16. $(a+5)\left(a^{2}-4 a+9\right)$

Factor the following. Show essential steps.
17. -32
18. $6 x-18$
19. $4 m^{3}-16 m^{2}+12 m$
20. $4(a-2)-x(a-2)$

Unit 4: Making Sense of Rational Expressions

This unit emphasizes performing mathematical operations on rational expressions and using these operations to solve equations and inequalities.

Unit Focus

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.2

Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality.

- MA.912.A.3.4

Solve and graph simple and compound inequalities in one variable and be able to justify each step in a solution.

Standard 4: Polynomials

- MA.912.A.4.1

Simplify monomials and monomial expressions using the laws of integral exponents.

- MA.912.A.4.2

Add, subtract, and multiply polynomials.

- MA.912.A.4.3

Factor polynomial expressions.

- MA.912.A.4.4

Divide polynomials by monomials and polynomials with various techniques, including synthetic division.

Vocabulary

Use the vocabulary words and definitions below as a reference for this unit.
canceling \qquad dividing a numerator and a denominator by a common factor to write a fraction in lowest terms or before multiplying fractions
Example: $\frac{15}{24}=\frac{{ }^{1} X \cdot 5}{2 \cdot 2 \cdot 2 \cdot \boldsymbol{Z}_{1}}=\frac{5}{8}$
common denominator a common multiple of two or more denominators
Example: A common denominator for $\frac{1}{4}$ and $\frac{5}{6}$ is 12 .
common factor \qquad a number that is a factor of two or more numbers
Example: 2 is a common factor of 6 and 12.
common multiple \qquad a number that is a multiple of two or more numbers
Example: 18 is a common multiple of 3,6 , and 9.
cross multiplication \qquad a method for solving and checking proportions; a method for finding a missing numerator or denominator in equivalent fractions or ratios by making the cross products equal
Example: Solve this proportion by doing the following.

$$
\begin{aligned}
& \frac{n}{9}=\frac{8}{12} \\
& \frac{n}{9}>\frac{8}{12}
\end{aligned}
$$

$12 \times n=9 \times 8$
$12 n=72$
$n=\frac{72}{12}$
$n=6$
Solution:

$$
\frac{(6)}{9}=\frac{8}{12}
$$

decimal number \qquad any number written with a decimal point in the number Examples: A decimal number falls between two whole numbers, such as 1.5 , which falls between 1 and 2. Decimal numbers smaller than 1 are sometimes called decimal fractions, such as five-tenths, or $\frac{5}{10}$, which is written 0.5.
denominator \qquad the bottom number of a fraction, indicating the number of equal parts a whole was divided into
Example: In the fraction $\frac{2}{3}$ the denominator is 3 , meaning the whole was divided into 3 equal parts.
difference \qquad a number that is the result of subtraction Example: In $16-9=7$, the difference is 7 .
distributive propertythe product of a number and the sum or difference of two numbers is equal to the sum or difference of the two products
Examples: $\quad x(a+b)=a x+b x$

$$
5(10+8)=5 \cdot 10+5 \cdot 8
$$

equation a mathematical sentence stating that the two expressions have the same value
Example: $2 x=10$

equivalent

(forms of a number)the same number expressed in different forms Example: $\frac{3}{4}, 0.75$, and 75%
expression \qquad a mathematical phrase or part of a number sentence that combines numbers, operation signs, and sometimes variables
Examples: $4 r^{2} ; 3 x+2 y ; \sqrt{25}$
An expression does not contain equal ($=$) or inequality ($<,>, \leq, \geq$, or \neq) signs.
factor \qquad a number or expression that divides evenly into another number; one of the numbers multiplied to get a product
Example: 1, 2, 4, 5, 10, and 20 are factors of 20 and $(x+1)$ is one of the factors of $\left(x^{2}-1\right)$.
factoring \qquad expressing a polynomial expression as the product of monomials and polynomials
Example: $x^{2}-5 x+4=0$

$$
(x-4)(x-1)=0
$$

fractionany part of a whole
$\quad \begin{aligned} & \text { Example: One-half written in fractional form } \\ & \\ & \text { is } \frac{1}{2} \text {. }\end{aligned}$.
inequality \qquad a sentence that states one expression is greater than $(>)$, greater than or equal to (\geq), less than $(<)$, less than or equal to (\leq), or not equal to (\neq) another expression
Examples: $a \neq 5$ or $x<7$ or $2 y+3 \geq 11$
integers
the numbers in the set
$\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$
inverse operation \qquad an action that undoes a previously applied action Example: Subtraction is the inverse operation of addition.
irrational number \qquad a real number that cannot be expressed as a ratio of two integers
Example: $\sqrt{2}$

least common

denominator (LCD)the smallest common multiple of the denominators of two or more fractions Example: For $\frac{3}{4}$ and $\frac{1}{6}, 12$ is the least common denominator.

least common

multiple (LCM) \qquad the smallest of the common multiples of two or more numbers
Example: For 4 and 6, 12 is the least common multiple.

terms that have the same variables and the same corresponding exponents Example: In $5 x^{2}+3 x^{2}+6$, the like terms are $5 x^{2}$ and $3 x^{2}$.
minimum \qquad the smallest amount or number allowed or possible
multiplicative identitythe number one (1); the product of a number and the multiplicative identity is the number itself
Example: $5 \times 1=5$

multiplicative property

of -1 \qquad the product of any number and -1 is the opposite or additive inverse of the number Example: $-1(a)=-a$ and $a(-1)=-a$
negative numbers \qquad numbers less than zero
numerator \qquad the top number of a fraction, indicating the number of equal parts being considered Example: In the fraction $\frac{2}{3}$, the numerator is 2 .
order of operations \qquad the order of performing computations in parentheses first, then exponents or powers, followed by multiplication and / or division (as read from left to right), then addition and / or subtraction (as read from left to right); also called algebraic order of operations
Example: $5+(12-2) \div 2-3 \times 2=$
$5+10 \div 2-3 \times 2=$
$5+5-6=$
$10-6=$
4

$\begin{aligned} & \frac{0}{0}= \\ & \text { K } \end{aligned}$	
polynomial \qquad a monomial or sum of monomials; any rational expression with no variable in the denominator Examples: $x^{3}+4 x^{2}-x+8 \quad 5 m p^{2}$ $-7 x^{2} y^{2}+2 x^{2}+3$	
positive numbersnumbers greater than zero	
	product \qquad the result of multiplying numbers together Example: In $6 \times 8=48$, the product is 48 .
	quotient \qquad the result of dividing two numbers Example: In $42 \div 7=6$, the quotient is 6 .
	ratiothe comparison of two quantities
	Example The ratio of a and b is $a: b$ or $\frac{a}{b}$, where $b \neq 0$.
	rational expression \qquad a fraction whose numerator and / or denominator are polynomials
,	rational number \qquad a number that can be expressed as a ratio $\frac{a}{b}$, where a and b are integers and $b \neq 0$
	real numbersthe set of all rational and irrational numbers
	reciprocals \qquad two numbers whose product is 1 ; also called multiplicative inverses
	Examples: 4 and $\frac{1}{4}$ are reciprocals because $\frac{4}{1} \times \frac{1}{4}=1 ; \frac{3}{4}$ and $\frac{4}{3}$ are reciprocals because $\frac{3}{4} \times \frac{4}{3}=1$; zero (0) has no multiplicative inverse

a fraction whose numerator and denominator have no common factor greater than 1 Example: The simplest form of $\frac{3}{6}$ is $\frac{1}{2}$.
simplify an expressionto perform as many of the indicated operations as possible
solution \qquad any value for a variable that makes an equation or inequality a true statement Example: In $y=8+9$ $y=17 \quad 17$ is the solution.
substitute \qquad to replace a variable with a numeral Example: 8(a) + 3

$$
8(5)+3
$$

sum \qquad the result of adding numbers together Example: In $6+8=14$, the sum is 14 .
term \qquad a number, variable, product, or quotient in an expression
Example: In the expression $4 x^{2}+3 x+x$, the terms are $4 x^{2}, 3 x$, and x.
variable \qquad any symbol, usually a letter, which could represent a number

Unit 4: Making Sense of Rational Numbers

Introduction

Algebra students must be able to add, subtract, multiply, divide, and simplify rational expressions efficiently. These skills become more important as you progress in using mathematics. As an algebra student, you will have the opportunity to work with methods you will need for future mathematical success.

Lesson One Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 4: Polynomials

- MA.912.A.4.1

Simplify monomials and monomial expressions using the laws of integral exponents.

- MA.912.A.4.2

Add, subtract, and multiply polynomials.

- MA.912.A.4.3

Factor polynomial expressions.

- MA.912.A.4.4

Divide polynomials by monomials and polynomials with various techniques, including synthetic division.

Simplifying Rational Expressions

An expression is a mathematical phrase or part of a number sentence that combines numbers, operation signs, and sometimes variables. A fraction, or any part of a whole, is an expression that represents a quotient-the result of dividing two numbers. The same fraction may be expressed in many different ways.

$$
\frac{1}{2}=\frac{2}{4}=\frac{3}{6}=\frac{5}{10}
$$

If the numerator (top number) and the denominator (bottom number) are both polynomials, then we call the fraction a rational expression. A rational expression is a fraction whose numerator and / or denominator are polynomials. The fractions below are all rational expressions.

$$
\frac{x}{x+y} \quad \frac{a^{2}-2 a+1}{a} \quad \frac{1}{y^{2}+4} \quad \frac{a}{b-3}
$$

When the variables or any symbols which could represent numbers (usually letters) are replaced, the result is a numerator and a denominator that are real numbers. In this case, we say the entire expression is a real number. Real numbers are all rational numbers and irrational numbers. Rational numbers are numbers that can be expressed as a ratio $\frac{a}{b}$, where a and b are integers and $b \neq 0$. Irrational numbers are real numbers that cannot be expressed as a ratio of two integers. Of course, there is an exception: when a denominator is equal to 0 , we say the fraction is undefined.

Note: In this unit, we will agree that no denominator equals 0 .

Fractions have some interesting properties. Let's examine them.

- If $\frac{a}{b}=\frac{c}{d}$, then $a d=b c . \quad \frac{4}{8}=\frac{6}{12}$ therefore $4 \bullet 12=8 \bullet 6$

- $\frac{a}{b}=\frac{a c}{b c}$
$\frac{4}{7}=\frac{4 \cdot 3}{7 \cdot 3}$ therefore $\frac{4}{7}=\frac{12}{21}$
Simply stated, if you multiply both the numerator and the denominator by the same number, the new fraction will be equivalent to the original fraction.
- $\frac{a c}{b c}=\frac{a}{b}$
$\frac{9}{21}=\frac{9 \div 3}{21 \div 3}$ therefore $\frac{9}{21}=\frac{3}{7}$
In other words, if you divide both the numerator and the denominator by the same number, the new fraction will be equivalent to the original fraction. The same rules are true for simplifying rational expressions by performing as many indicated operations as possible. Many times, however, it is necessary to factor and find numbers or expressions that divide the numerator or the denominator, or both, so that the common factors become easier to see. Look at the following example:

$$
\frac{3 x+3 y}{3}=\frac{1}{\not \partial(x+y)} \frac{b_{1}}{}=x+y
$$

Notice that, by factoring a 3 out of the numerator, we can divide (or cancel) the 3 s, leaving $x+y$ as the final result.

Before we move on, do the practice on the following pages.

Practice

Simplify each expression. Refer to properties and examples on the previous pages as needed. Show essential steps.

1. $\frac{4 x-4}{x-1}$
2. $\frac{4 m-2}{2 m-1}$
3. $\frac{6 x-3 y}{3}$

Example:

$$
\frac{4 x-6}{6}=\frac{{ }^{1} 2(2 x-3)}{{ }_{3} 6}=\frac{1(2 x-3)}{3}=\frac{2 x-3}{3}
$$

4. $\frac{5 a-10}{15}$
5. $\frac{2 y-8}{4}$
6. $\frac{3 m+6 n}{3}$
7. $\frac{14 r^{3} s^{4}+28 r s^{2}-7 r s}{7 r^{2} s^{2}}$

Practice

Simplify each expression. Refer to properties and examples on the previous pages as needed. Show essential steps.

Example:

$$
\frac{2 x^{2}-8}{x+2}=\frac{2\left(x^{2}-4\right)}{x+2}=\frac{2(x-2)(x+2)^{1}}{x+2_{1}}=2(x-2)
$$

Note: In the above example, notice the following:
\rightarrow After we factored 2 from the numerator,
\rightarrow we were left with $x^{2}-4$,
\rightarrow which can be factored into $(x+2)(x-2)$.
\rightarrow Then the $(x+2)$ is cancelled,
\rightarrow leaving $2(x-2)$ as the final answer.

1. $\frac{3 y^{2}-27}{y-3}$
2. $\frac{a-b}{a^{2}-b^{2}}$
3. $\frac{b-a}{a^{2}-b^{2}}$
4. $\frac{9 x+3}{6 x+2}$
5. $\frac{9 x^{2}+3}{6 x+3}$

Additional Factoring

Look carefully at numbers 2-5 in the previous practice. What do you notice about them?

Alert! You cannot cancel individual terms (numbers, variables, products, or quotients in an expression)-you can only cancel factors (numbers or expressions that exactly divide another number)!

$$
\frac{2 x+4}{4} \neq \frac{2 x}{4} \quad \frac{3 x+6}{3} \neq \frac{x+6}{3} \quad \frac{9 x^{2}+3}{6 x+3} \neq \frac{9 x^{2} x}{6 x}
$$

Look at how simplifying these expressions was taken a step further. Notice that additional factoring was necessary.

Example

$$
\frac{x^{2}+5 x+6}{x+3}=\frac{1(x+3)(x+2)}{1 x+3}=(x+2)=x+2
$$

Look at the denominator above. It is one of the factors of the numerator. Often, you can use the problem for hints as you begin to factor.

Practice

Factor each of these and then simplify. Look for hints within the problem. Refer to the previous page as necessary. Show essential steps.

1. $\frac{a^{2}-3 a+2}{a-2}$
2. $\frac{b^{2}-2 b-3}{b-3}$

Sometimes, it is necessary to factor both the numerator and denominator. Examine the example below, then simplify each of the following expressions.

Example:

$$
\frac{x^{2}-4}{x^{2}+x-6}=\frac{(x+2)(x-2)^{1}}{(x+3)(x-2)_{1}}=\frac{(x+2)}{(x+3)}=\frac{x+2}{x+3} \quad \begin{aligned}
& \text { Note: The } x^{\prime} \text { s do } \\
& \text { not cancel. }
\end{aligned}
$$

3. $\frac{2 r^{2}+r-6}{r^{2}+r-2}$
4. $\frac{x^{2}+x-2}{x^{2}-1}$

Practice

Simplify each expression. Show essential steps.

1. $\frac{5 b-10}{b-2}$
2. $\frac{6 a-9}{10 a-15}$
3. $\frac{9 x+3}{9}$
4. $\frac{6 b+9}{12}$
${ }^{2} \times \overline{4}$
5. $\frac{3 a^{2} b+6 a b-9 b^{2}}{3 b}$
6. $\frac{x^{2}-16}{x+4}$
7. $\frac{2 a-b}{b^{2}-4 a^{2}}$
8. $\frac{6 x^{2}+2}{9 x^{2}+3}$

Practice

Factor each of these expressions and then simplify. Show essential steps.

1. $\frac{y^{2}+5 y-14}{y-2}$
2. $\frac{a^{2}-5 a+4}{a-4}$
3. $\frac{6 m^{2}-m-1}{2 m^{2}+9 m-5}$
4. $\frac{4 x^{2}-9}{2 x^{2}+x-6}$

Use the list below to write the correct term for each definition on the line provided.

denominator	numerator	rational expression
expression	polynomial	real numbers
fraction	quotient	variable

1. a mathematical phrase or part of a number sentence that combines numbers, operation signs, and sometimes variables
2. the top number of a fraction, indicating the number of equal parts being considered
3. the bottom number of a fraction, indicating the number of equal parts a whole was divided into
4. the set of all rational and irrational numbers
5. any part of a whole
6. a fraction whose numerator and / or denominator are polynomials
7. any symbol, usually a letter, which could represent a number
8. a monomial or sum of monomials; any rational expression with no variable in the denominator
9. the result of dividing two numbers

Practice

Use the list below to complete the following statements.

```
canceling
cross multiplication
equivalent
factor
integers
product
simplify an expression
terms
```

1. If you multiply both the numerator and the denominator by the same number, the new fraction will be \qquad because it is the same number expressed in a different form.
2. The numbers in the set $\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$ are
\qquad .
3. If you divide a numerator and a denominator by a common factor to write a fraction in lowest terms, or before multiplying fractions, you are \qquad .
4. To \qquad , you need to perform as many of the indicated operations as possible.
5. Numbers, variables, products, or quotients in an expression are called \qquad .
6. A \qquad is a number or expression that divides evenly into another number.
7. When you multiply numbers together, the result is called the
\qquad .
8. To find a missing numerator or denominator in equivalent fractions or ratios, you can use a method called \qquad and make the cross products equal.

Lesson Two Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 4: Polynomials

- MA.912.A.4.1

Simplify monomials and monomial expressions using the laws of integral exponents.

- MA.912.A.4.2

Add, subtract, and multiply polynomials.

- MA.912.A.4.3

Factor polynomial expressions.

- MA.912.A.4.4

Divide polynomials by monomials and polynomials with various techniques, including synthetic division.

Addition and Subtraction of Rational Expressions

In order to add and subtract rational expressions in fraction form, it is necessary for the fractions to have a common denominator (the same bottom number). We find those common denominators in the same way we did with simple fractions. The process requires careful attention.

- When we add $\frac{3}{7}+\frac{5}{8}$, we find a common denominator by multiplying 7 and 8 .
- Then we change each fraction to an equivalent fraction whose denominator is 56 .

$$
\frac{3 \cdot 8}{7 \cdot 8}=\frac{24}{56} \quad \text { and } \quad \frac{5 \cdot 7}{8 \cdot 7}=\frac{35}{56}
$$

- Next we add $\frac{24}{56}+\frac{35}{56}=\frac{59}{56}$.

Finding the Least Common Multiple (LCM)

By multiplying the denominators of the terms we intend to add or subtract, we can always find a common denominator. However, it is often to our advantage to find the least common denominator (LCD), which is also the least common multiple (LCM). The $L C D$ or $L C M$ is the smallest of the common multiples of two or more numbers. This makes simplifying the result easier. Look at the example on the following page.

Let's look at finding the LCM of 36,27 , and 15.

1. Factor each of the denominators and examine the results.

$36=2 \bullet 2 \cdot 3 \bullet 3$	\leftarrow
$27=3 \bullet 3 \bullet 3$	The new denominator must contain at least two 2s and two 3s.
$45=3 \bullet 3 \bullet 5$	\leftarrowThe new denominator must contain at least three 3s.
The new denominator must contain at least two 3s and one 5.	

2. Find the minimum combination of factors that is described by the combination of all the statements above-two 2 s , three 3 s , and one 5 .

3. Convert the terms to equivalent fractions using the new common denominator and then proceed to add or subtract.

$$
\frac{5}{36}=\frac{75}{540} ; \frac{8}{27}=\frac{160}{540} ; \frac{4}{15}=\frac{144}{540} \rightarrow \frac{75}{540}+\frac{160}{540}-\frac{144}{540}=\frac{91}{540}
$$

Now, let's look at an algebraic example.

$$
\frac{y}{y^{2}-9}-\frac{1}{y^{2}-4 y-21}=
$$

1. Factor each denominator and examine the results.

$$
\begin{aligned}
y^{2}-9=(y+3)(y-3) \leftarrow & \text { The new denominator } \\
& \text { must contain }(y+3) \\
& \text { and }(y-3) . \\
y^{2}-4 y-21=(y-7)(y+3) \longleftarrow & \text { The new denominator } \\
& \text { must contain }(y-7) \\
& \text { and }(y+3) .
\end{aligned}
$$

2. Find the minimum combination of factors.

$$
\mathrm{LCM}=(y+3)(y-3)(y-7)
$$

3. Convert each fraction to an equivalent fraction using the new common denominator and proceed to subtract.
 distributes to make

$$
\frac{y^{2}-7 y-y+3}{(y+3)(y-3)(y-7)}=
$$ $-y+3$ in the numerator (distributive property)

$$
\frac{y^{2}-8 y+3}{(y+3)(y-3)(y-7)}
$$

Hint: Always check to see if the numerator can be factored and then reduce, if possible. Do this to be sure the answer is in the lowest terms.

Practice

Write each sum or difference as a single fraction in lowest terms. Show essential steps.

1. $\frac{a}{7}+\frac{2 a}{7}-\frac{5}{7}$
2. $\frac{x+1}{5}-\frac{x+1}{5}$
3. $\frac{x-2}{2 y}+\frac{x}{2 y}$
4. $\frac{5}{6}+\frac{y}{4}$
5. $\frac{x+1}{5}+\frac{x-1}{5}$
6. $\frac{2}{x+2}-\frac{3}{x+3}$

Practice

Write each sum or difference as a single fraction in lowest terms. Show essential steps.

Example: $\frac{5}{b^{2}-9}-\frac{1}{b-3}=\frac{5}{(b+3)(b-3)}-\frac{1}{b-3}=$

$$
\begin{aligned}
\frac{5}{(b+3)(b-3)}-\frac{1(b+3)}{(b+3)(b-3)} & = \\
\frac{5-1(b+3)}{(b+3)(b-3)} & = \\
\frac{5-b-3}{(b+3)(b-3)} & = \\
\frac{2-b}{(b+3)(b-3)} & =
\end{aligned}
$$

1. $\frac{1}{2 z+1}+\frac{3}{z-2}$
2. $\frac{r}{r^{2}-16}+\frac{r+1}{r^{2}-5 r+4}$
3. $\frac{8}{a^{2}-4}-\frac{2}{a^{2}-5 a+6}$
4. $m+\frac{1}{m-1}-\frac{1}{(m-1)^{2}}$

Practice

Write each sum or difference as a single fraction in lowest terms. Show essential steps.

1. $\frac{x}{3}-\frac{3 y}{3}+\frac{4 z}{3}$
2. $\frac{x-2}{2 y}-\frac{x}{2 y}$
3. $\frac{x+1}{5}-\frac{x-1}{5}$
4. $\frac{2}{2 a-4 b}-\frac{b-2}{2 a-4 b}+\frac{7 b}{2 a-4 b}$
5. $\frac{x+3}{4}+\frac{5-x}{10}$
6. $\frac{5}{2 m-6}-\frac{3}{m-3}$

Practice

Write each sum or difference as a single fraction in lowest terms. Show essential steps.

1. $\frac{2}{x^{2}-x-2}-\frac{2}{x^{2}+2 x+1}$
2. $\frac{1}{b^{2}-1}-\frac{1}{b^{2}+2 b+1}$
3. $\frac{3 x}{x^{2}+3 x-10}-\frac{2 x}{x^{2}+x-6}$
4. $\frac{1}{x^{2}-7 x+12}+\frac{2}{x^{2}-5 x+6}-\frac{3}{x^{2}-6 x+8}$

Lesson Three Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 4: Polynomials

- MA.912.A.4.1

Simplify monomials and monomial expressions using the laws of integral exponents.

- MA.912.A.4.2

Add, subtract, and multiply polynomials.

- MA.912.A.4.3

Factor polynomial expressions.

Multiplication and Division of Rational Expressions

To multiply fractions, you learned to multiply the numerators together, then multiply the denominators together, and then reduce, if possible.

$$
\frac{3}{8} \times \frac{5}{7}=\frac{15}{56}
$$

We use this same process with rational expressions.

$$
\frac{4}{5 x} \times \frac{11 x}{13}=\frac{44 x}{65 x}=\frac{44}{65}
$$

Sometimes it is simpler to reduce or cancel common factors before multiplying.

$$
\frac{4}{5 x} \times \frac{11 x}{13}=\frac{4}{5 x} \times \frac{11 x}{13}=\frac{44}{65}
$$

When we need to divide fractions, we invert (flip over) the fraction to the right of the division symbol and then multiply.

$$
\frac{\text { invert }}{\frac{2 x^{2}}{3 y} \div \frac{4 x}{5 y^{3}}=\frac{2 x^{2}}{3 y} \cdot \frac{5 y^{3}}{4 x}=\frac{10 x^{2} y^{3}}{12 x y}=\frac{5 x y^{2}}{6}}
$$

Pay careful attention to negative signs in the factors.
Decide before you multiply whether the answer will be positive or negative.

- If the number of negative factors is even, the result will be positive.
- If the number of negative factors is odd, the answer will be negative.

Remember: In this unit, we agreed that no denominator equals 0 .

Practice

Write each product as a single fraction in simplest terms. Show essential steps.

1. $\frac{6 x^{3}}{3} \cdot \frac{4 b}{2 x}$
2. $\frac{14 a^{3} b}{3 b} \cdot \frac{-6}{7 a b}$
3. $\frac{-12 a b^{2}}{5 b c} \cdot \frac{10 b^{2} c}{6 a b}$

Practice

Write each product as a single fraction in simplest terms. Show essential steps.

Example:

$$
\frac{4 a^{2}-1}{a^{2}-4} \cdot \frac{a+2}{4 a+2}=
$$

$$
\begin{array}{r}
\frac{(2 a+1)(2 a-1)}{(a+2)(a-2)} \cdot \frac{a+2}{2(2 a+1)}= \\
\frac{(2 a-1)}{2(a-2)}= \\
\frac{2 a-1}{2(a-2)}
\end{array}
$$

1. $\frac{5 x+25}{4 x} \cdot \frac{2 x}{3 x+15}$
2. $\frac{y^{2}-y-2}{y^{2}+4 y+3} \cdot \frac{y^{2}-4 y-5}{y^{2}-3 y-10}$

Hint: If you have trouble factoring, review the examples and explanation of processes on pages 304-306.

4. $\frac{3 x^{2}-3 x}{5} \cdot \frac{x^{2}-9 x-10}{6 x-60} \cdot \frac{4}{1-x^{2}}$

Practice

Write each quotient as a single fraction in simplest terms. Show essential steps.
(II) Remember: Invert and then multiply!

1. $\frac{9 a b}{x} \div \frac{3 a}{2 x^{2}}$
2. $\frac{x^{2}-x-6}{x^{2}-2 x-15} \div \frac{x^{2}-4}{x^{2}-6 x+5}$
3. $\frac{10 a^{2}-13 a-3}{2 a^{2}-a-3} \div \frac{5 a^{2}-9 a+-2}{3 a^{2}+2 a-1}$
4. $\frac{9 r^{2}+3 r-2}{12 r^{2}+5 r-2} \div \frac{9 r^{2}-6 r+1}{8 r^{2}+10 r-3}$

Practice

Write each product as a single fraction in simplest terms. Show essential steps.

1. $\frac{4 a^{3}}{3} \cdot \frac{6 b}{2 a}$
2. $\frac{-18 a b^{2}}{5 b c} \cdot \frac{15 b^{3} c}{6 a b}$
3. $\frac{24 a^{3} b}{3 b} \cdot \frac{-9}{6 a b}$
4. $\frac{9 b^{2}-25}{2 b-2} \cdot \frac{b^{2}-1}{6 b-10}$
5. $\frac{x^{2}-x-20}{x^{2}+7 x+12} \cdot \frac{x+3}{x-5}$
6. $\frac{7 x+14}{14 x-28} \cdot \frac{4-2 x}{x+2} \cdot \frac{x+3}{x+1}$

Hint: $a-b=-(b-a)$

Practice

Write each quotient as a single fraction in simplest terms. Show essential steps.

1. $\frac{28 x^{2} y^{3}}{10 a^{2}} \div \frac{21 x^{3} y}{5 a}$
2. $\frac{4 x-8}{3} \div \frac{-(6 x-12)}{9}$
3. $\frac{6 a^{3} b}{4 x} \div \frac{3 a}{2 x^{3}}$
4. $\frac{r^{2}+2 r-15}{r^{2}+3 r-10} \div \frac{r^{2}-9}{r^{2}-9 r+14}$
5. $\frac{y^{2}+y-2}{y^{2}+2 y-3} \div \frac{y^{2}+7 y+10}{y^{2}-2 y-15}$

Lesson Four Purpose

Reading Process Strand
Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.2

Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality.

Standard 4: Polynomials

- MA.912.A.4.1

Simplify monomials and monomial expressions using the laws of integral exponents.

- MA.912.A.4.2

Add, subtract, and multiply polynomials.

- MA.912.A.4.3

Factor polynomial expressions.

- MA.912.A.4.4

Divide polynomials by monomials and polynomials with various techniques, including synthetic division.

Solving Equations

Recall that an equation is a mathematical sentence stating the two expressions have the same value. The equality symbol or equal sign (=) shows that two quantities are equal. An equation equates one expression to another.
$3 x-7=8$ is an example of an equation.
You may be able to solve this problem mentally, without using paper and pencil.

$$
3 x-7=8
$$

The problem reads- 3 times what number minus 7 equals 8 ?

$$
\begin{array}{r}
3 \bullet 4=12 \\
12-7=5 \\
4
\end{array} \text { too small }
$$

Think:

$$
\begin{aligned}
3 \bullet 5 & =15 \\
15-7 & =8 \\
3 x-7 & =8 \\
3(5)-7 & =8
\end{aligned}
$$

Solve each of the following mentally, writing only the answer.

1. $4 y+6=22$

$$
y=
$$

2. $2 a-4=10$

$$
a=
$$

3. $5 x-15=-20$

$$
x=
$$

4. $-7 b+6=-22$

$$
b=
$$

Check yourself: Add all your answers for problems 1-4. Did you get
a sum of 14? If not, correct your work before continuing.

Step-by-Step Process for Solving Equations

A problem like $\frac{x+12}{5}=-2(x-10)$ is a bit more challenging. You could use a guess and check process, but that would take more time, especially when answers involve decimals or fractions.

So, as problems become more difficult, you can see that it is important to have a process in mind and to write down the steps as you go.

Unfortunately, there is no exact process for solving equations. Every rule has an exception. That is why creative thinking, reasoning, and practice are necessary and keeping a written record of the steps you have used is extremely helpful.

Example 1

Let's look at a step-by-step process for solving the problem above.

$$
\begin{array}{rlrl}
\frac{x+12}{5} & =-2(x-10) & \leftarrow \text { Step 1: Copy the problem carefully! } \\
\frac{x+12}{5} & =-2 x+20 & \leftarrow \text { Step 2: Simplify each side of the equation } \\
\text { as needed by distributing the } 2 .
\end{array}
$$

Example 2

What if the original problem had been $5 x+12=-2(x-10)$? The process would have been different. Watch for differences.

$$
\begin{aligned}
& 5 x+12=-2(x-10) \quad \leftarrow \text { Step 1: Copy the problem carefully! } \\
& 5 x+12=-2 x+20 \longleftarrow \text { Step 2: Simplify each side of the equation } \\
& \text { as needed by distributing the } 2 \text {. } \\
& 5 x+12-12=-2 x+20-12 \leftarrow \text { Step 3: Subtract } 12 \text { from both sides of the } \\
& 5 x=-2 x+8 \quad \text { equation. } \\
& 5 x+2 x=-2 x+2 x+8 \longleftarrow \text { Step 4: Add } 2 x \text { to both sides of the } \\
& 7 x=8 \\
& \text { equation. } \\
& 7 x \div 7=8 \div 7 \quad \leftarrow \text { Step 5: Divide both sides by } 7 \text {. } \\
& x=\frac{8}{7} \\
& 5 x+12=-2(x-10) \longleftarrow \text { Step 6: Check by replacing the variable } \\
& 5\left(\frac{8}{7}\right)+12=-2\left(\frac{8}{7}\right)+20 \\
& \frac{40}{7}+12=\frac{-16}{7}+20 \\
& 5 \frac{5}{7}+12=-2 \frac{2}{7}+20 \\
& 17 \frac{5}{7}=17 \frac{5}{7} \quad \leftarrow \quad \text { It checks! }
\end{aligned}
$$

Did you notice that the steps were not always the same? The rules for solving equations change to fit the individual needs of each problem. You can see why it is a good idea to check your answers each time. You may need to do some steps in a different order than you originally thought.

Generally speaking the processes for solving equations are as follows.

- Simplify both sides of the equation as needed.
- "Undo" additions and subtractions.
- "Undo" multiplications and divisions.

You might notice that this seems to be the opposite of the order of operations. Typically, we "undo" in the reverse order from the original process.

$$
\begin{aligned}
\text { SAM }= & \text { Simplify (steps } 1 \text { and 2) then } \\
& \text { Add (or subtract) } \\
& \text { Multiply (or divide) }
\end{aligned}
$$

Here are some additional examples.

Example 3

Solve:

$$
\left.\begin{array}{rlrl}
6 y+4(y+2) & =88 \\
6 y+4 y+8 & =88 & & \text { use distributive property } \\
10 y+8-8 & =88-8 \longleftarrow & \text { combine like terms and undo addition } \\
& & \text { by subtracting } 8 \text { from each side }
\end{array}\right] \begin{aligned}
\frac{10 y}{10} & =\frac{80}{10} \longleftarrow \\
y & =8
\end{aligned}
$$

Check solution in the original equation:

$$
\begin{aligned}
6 y+4(y+2) & =88 \\
6(8)+4(8+2) & =88 \\
48+4(10) & =88 \\
48+40 & =88 \\
88 & =88 \quad \leftarrow \text { It checks! }
\end{aligned}
$$

Example 4

Solve:

$$
\begin{array}{rlrl}
-\frac{1}{2}(x+8) & =10 & & \\
-\frac{1}{2} x-4 & =10 & \leftarrow \quad \text { use distributive property } \\
-\frac{1}{2} x-4+4 & =10+4 & \leftarrow \begin{array}{l}
\text { undo subtraction by adding } 4 \text { to } \\
\text { both sides }
\end{array} \\
-\frac{1}{2} x & =14 \\
(-2)-\frac{1}{2} x & =14(-2) & \leftarrow & \text { isolate the variable by multiplying } \\
x & =-28 & & \text { each side by the reciprocal of }-\frac{1}{2}
\end{array}
$$

Check solution in the original equation:

$$
\begin{aligned}
-\frac{1}{2}(x+8) & =10 \\
-\frac{1}{2}(-28+8) & =10 \\
-\frac{1}{2}(-20) & =10 \\
10 & =10 \quad \leftarrow \text { It checks! }
\end{aligned}
$$

Example 5

Solve:

$$
\begin{array}{rlrl}
26 & =\frac{2}{3}(9 x-6) & \\
26 & =\frac{2}{3}(9 x)-\frac{2}{3}(6) \leftarrow \text { use distributive property } \\
26 & =6 x-4 & & \text { undo subtraction by adding } 4 \text { to } \\
26+4 & =6 x-4+4 & \begin{array}{l}
\text { each side }
\end{array} \\
& & \leftarrow \begin{array}{l}
\text { undo multiplication by dividing } \\
\text { each side by } 6
\end{array} \\
\frac{30}{6} & =\frac{6 x}{6} & & \\
5 & =x & &
\end{array}
$$

Check solution in the original equation:

$$
\begin{aligned}
26 & =\frac{2}{3}(9 x-6) \\
26 & =\frac{2}{3}(9 \bullet 5-6) \\
26 & =\frac{2}{3}(39) \\
26 & =26
\end{aligned} \leftarrow \text { It checks! }
$$

Example 6

Solve:

$$
\begin{aligned}
& x-(2 x+3)=4 \\
& x-1(2 x+3)=4 \\
& x-2 x-3=4 \\
& \leftarrow \text { use the multiplicative property of } \mathbf{- 1} \\
&-1 x-3=4 \\
&-1 x-3+3=4+3 \longleftarrow \text { use the multiplicative identity of } \mathbf{1} \\
& \text { and use the distributive property }
\end{aligned}
$$

Examine the solution steps above. See the use of the multiplicative property of -1 in front of the parentheses on line two.
line 1: $\quad x-(2 x+3)=4$
line 2: $x-1(2 x+3)=4$
Also notice the use of multiplicative identity on line three.
line 3: $\quad 1 x-2 x-3=4$
The simple variable x was multiplied by $1(1 \bullet x)$ to equal $1 x$. The $1 x$ helped to clarify the number of variables when combining like terms on line four.

Check solution in the original equation:

$$
\begin{aligned}
x-(2 x+3) & =4 \\
-7-(2 \bullet-7+3) & =4 \\
-7-(-11) & =4 \\
4 & =4 \quad \leftarrow \text { It checks! }
\end{aligned}
$$

Practice

Solve and check each equation. Use the examples on pages 325-330 for reference. Show essential steps.

Hint: Find a step that looks similar to the problem you need help with and follow from that point.
(u)R Remember: To check your work, replace the variable in the original problem with the answer you found.

1. $3 x-7=17$
2. $4 x+20=x-4$
3. $\frac{x}{6}=1.5$
4. $\frac{2 x}{5}=3.2$
5. $5(x-4)=20$
6. $5(4 x-7)=0$
7. $8 x-2 x=42$
8. $5 x-3=2 x+18$
9. $-2 x+4=-4 x-10$

Practice

Solve and check each equation. Use the examples on pages 325-330 for reference. Show essential steps.

1. $2(3 x-4)+6=10$
2. $3(x-7)-x=-9$
3. $\frac{2}{3} x=1$

Hint: $\frac{2}{3} x=\frac{2 x}{3}$. Rewrite 1 as $\frac{1}{1}$ and cross multiply.
4. $\frac{-1}{2} x-\frac{3}{4}=4$
5. $-3 x=\frac{-33}{8}$
6. $\frac{-2}{x}=8$
7. $-3 x-\frac{3}{2}=\frac{11}{2}$

Practice

Solve and check each equation.

1. $-87=9-8 x$
2. $4 k+3=3 k+1$
3. $5 a+9=64$
4. $\frac{b}{3}+5=-2$
5. $4 x=-(9-x)$
6. $\frac{5}{x}=-10$
7. $3 x-1=-x+19$

Practice

Solve and check each equation. Reduce fractions to simplest form.

1. $5 x-3=2 x+18$
2. $6 x-(4 x-12)=3 x+5$
3. $\frac{x}{6}=\frac{-24}{5}$
4. $4(x-2)=-3(x+5)$
5. $5\left(\frac{1}{3} x-2\right)=4$
6. $\frac{4}{x}+\frac{3}{2}=\frac{5}{8}$
7. $\frac{2}{9} x=\frac{1}{5}$
8. $\frac{-1}{2}+\frac{8 x}{5}=\frac{-7}{8}$

Lesson Five Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.2

Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality.

- MA.912.A.3.4

Solve and graph simple and compound inequalities in one variable and be able to justify each step in a solution.

Standard 4: Polynomials

- MA.912.A.4.1

Simplify monomials and monomial expressions using the laws of integral exponents.

- MA.912.A.4.2

Add, subtract, and multiply polynomials.

- MA.912.A.4.3

Factor polynomial expressions.

- MA.912.A.4.4

Divide polynomials by monomials and polynomials with various techniques, including synthetic division.

Solving Inequalities

Inequalities are mathematical sentences that state two expressions are not equal. Instead of using the equal symbol ($=$), we use the following with inequalities.

- greater than $>$
- less than $<$
- greater than or equal to \geq
- less than or equal to \leq
- not equal to \neq
©(《) Remember: The "is greater than" $(>)$ or "is less than" $(<)$ symbols always point to the lesser number.

For example:

$$
\begin{aligned}
& 5>\rightarrow 3 \\
& 3 \ll 5
\end{aligned}
$$

We have been solving equations in this unit. When we solve inequalities, the procedures are the same except for one important difference.

When we multiply or divide both sides of an inequality by the same negative number, we reverse the direction of the inequality symbol.

Example

Solve by dividing by a negative number and reversing the inequality sign.

$$
\begin{aligned}
-3 x & <6 \\
\frac{-3 x}{-3}>\frac{6}{-3} & \leftarrow \text { divide each side by }-3 \text { and } \\
x & >-2
\end{aligned} \quad \text { reverse the inequality symbol }
$$

To check this solution, pick any number greater than -2 and substitute your choice into the original inequality. For instance, $-1,0$, or 3 , or 3,000 could be substituted into the original problem.

Check with different solutions of numbers greater than -2:
substitute -1

$$
\begin{aligned}
-3 x & <6 \\
-3(-1) & <6 \\
3 & <6 \quad \leftarrow \text { It checks! }
\end{aligned}
$$

substitute 3

$$
\begin{aligned}
&-3 x<6 \\
&-3(3)<6 \\
&-9<6 \\
& \text { セ It checks! }
\end{aligned}
$$

substitute 3,000

$$
\begin{aligned}
-3 x & <6 \\
-3(3,000) & <6 \\
-9,000 & <6 \quad \leftarrow \text { It checks! }
\end{aligned}
$$

Notice that $-1,0,3$, and 3,000 are all greater than -2 and each one checks as a solution.

Study the following examples.

Example 1

Solve by multiplying by a negative number and reversing the inequality sign.

$$
\begin{aligned}
-\frac{1}{3} y & \geq 4 \\
(-3)-\frac{1}{3} y & \leq 4(-3) \leftarrow \text { multiply each side by }-3 \text { and } \\
y & \leq-12
\end{aligned}
$$

Example 2

Solve by first adding, then dividing by a negative number, and reversing the inequality sign.

$$
\begin{aligned}
-3 a-4 & >2 \\
-3 a-4+4 & >2+4 \leftarrow \text { add } 4 \text { to each side } \\
-3 a & >6 \\
\frac{-3 a}{-3} & <\frac{6}{-3} \quad \leftarrow \text { divide each side by }-3 \text { and } \\
a & <-2 \quad \text { reverse the inequality symbol }
\end{aligned}
$$

Example 3

Solve by first subtracting, then multiplying by a negative number, and reversing the inequality sign.

$$
\begin{aligned}
\frac{y}{-2}+5 & \leq 0 \\
\frac{y}{-2}+5-5 & \leq 0-5 \longleftarrow \text { subtract } 5 \text { from each side } \\
\frac{y}{-2} & \leq-5 \\
\frac{(-2) y}{-2} & \geq(-5)(-2)
\end{aligned} \quad \text { multiply each side by }-2 \text { and } \quad \text { reverse the inequality symbol }
$$

$$
y \geq 10
$$

Example 4

Solve by first subtracting, then multiplying by a positive number. Do not reverse the inequality sign.

$$
\begin{array}{rlrl}
\frac{n}{2}+5 & \leq 2 & & \\
\frac{n}{2}+5-5 & \leq 2-5 & \leftarrow \text { subtract } 5 \text { from each side } \\
\frac{n}{2} & \leq-3 & & \\
\frac{(2) n}{2} & \leq-3(2) & \leftarrow \text { multiply each side by } 2, \text { but } \\
n & \leq-6 \quad & & \text { do not reverse the inequality symbol because } \\
& & & \text { we multiplied by a positive number }
\end{array}
$$

When multiplying or dividing both sides of an inequality by the same positive number, do not reverse the inequality symbol-leave it alone.

Example 5

Solve by first adding, then dividing by a positive number. Do not reverse the inequality sign.

$$
\begin{aligned}
& 7 x-3>-24 \\
& 7 x-3+3>-24+3 \leftarrow \text { add } 3 \text { to each side } \\
& 7 x>-21 \longleftarrow \text { divide each side by } 7 \text {, but } \\
& \frac{7 x}{7}>\frac{-21}{7} \quad \text { do not reverse the inequality symbol because } \\
& x>-3 \quad \text { we divided by a positive number }
\end{aligned}
$$

Practice

Solve each inequality on the following page. Use the examples below and pages 340-343 for reference. Show essential steps.
(c) Remember: Reverse the inequality symbol every time we multiply or divide both sides of the inequality by a negative number. See the example below.

Example: $\quad 7-3 x>13$

Notice in the example above that we first subtracted 7 from both sides of the sentence. Then we solved for x, we divided both sides by -3 , and the $>$ symbol became a symbol.

Check your answer by choosing a number that fits your answer. Replace the variable in the original sentence with the chosen number. Check to see if it makes a true statement.

In the example above, choose a number that makes $x<-2$ a true statement. For example, let's try -3.

Now put -3 in place of the variable in the original problem and see what happens.

$$
\begin{aligned}
7-3 x & >13 \\
7-3(-3) & >13 \\
7-(-9) & >13 \\
7+9 & >13 \\
16 & >13
\end{aligned} \quad \begin{aligned}
& \text { original sentence } \\
& \\
&
\end{aligned}
$$

See directions and examples on previous page.

1. $6 x-7>17$
2. $13 x+20<x-4$
3. $\frac{x}{5} \geq 1.5$
4. $\frac{2 x}{5}>4.8$
5. $5(x-4)<20$
6. $3(4 x-7) \geq 15$
7. $3(x-7)-x>-9$
8. $\frac{-1}{2} x-\frac{3}{4} \leq 6$
9. $2 x-9<-21$
10. $\frac{-12}{x}<8$
11. $4(x-7)-x>-7$
12. $\frac{2}{3} x>10$

Practice

Solve each inequality. Show essential steps.

1. $5 x-3 \leq 12$
2. $2 a+7 \geq 5 a-5$
3. $\frac{2 x}{5}>2.4$
4. $5(x-5)<20$

$$
\text { 5. }-2(x+6)>14
$$

6. $8 x-12 x>48$
7. $5 x-3 \geq 2 x+18$
8. $-2 x+4<-4 x-12$

9. $\frac{2}{3} x>11$

Practice

Write True if the statement is correct. Write False if the statement is not correct.
\qquad 1. An equation is a mathematical sentence that uses an equal sign to show that two quantities are equal.
2. A product is the result of dividing two numbers.
3. A quotient is the result of multiplying two numbers.
4. An expression is a collection of numbers, symbols, and / or operation signs that stand for a number.
\qquad 5. To simplify an expression, perform as many indicated operations as possible.
6. A common multiple is a number that is a multiple of two or more numbers.
7. The smallest of the common multiples of two or more numbers is called the least common multiple (LCM).
\qquad 8. A number that is the result of subtraction is called the sum.
9. A number that is the result of adding numbers together is called the difference.
10. When solving an inequality, every time you add or subtract both sides of the inequality by a negative number, you will have to reverse the inequality symbol.

Unit Review

Simplify each expression.

1. $\frac{5 x-10}{x-2}$
2. $\frac{6 x-9 y}{3}$
3. $\frac{12 a^{2} b^{5}+18 a^{3} b^{4}-24 a^{4} b^{3}}{-6 a^{2} b^{3}}$
4. $\frac{12 x-6}{10 x-5}$

$$
\text { 5. } \frac{x^{2}-4}{x^{2}+x-6}
$$

Write each sum or difference as a single fraction in lowest terms.
7. $\frac{3 a}{8}+\frac{a}{8}-\frac{6}{8}$
8. $\frac{x+3}{6}-\frac{x-3}{6}$
9. $\frac{x-2}{4}+\frac{x+2}{4}$
10. $\frac{2}{3 x+1}+\frac{5}{x-3}$
11. $\frac{3}{a^{2}-9}-\frac{6}{a^{2}+a-6}$

Write each product or quotient as a single fraction in simplest terms.
12. $\frac{21 x^{2} y^{3}}{3 x y} \cdot \frac{-9}{7 x y^{2}}$
13. $\frac{a}{a+4} \cdot \frac{3 a+12}{6}$
14. $\frac{-12}{x^{2}-x} \div \frac{4 x-2}{x^{2}-1}$
15. $\frac{x^{2}-x-20}{x^{2}+7 x+12} \cdot \frac{x^{2}+9 x+18}{x^{2}-7 x+10}$

19. $28+6 x=23+8 x$

20. $5 x+4 \geq 20$
21. $16-4 x<20$
22. $5(x+2)>4 x+7$

Unit 5: How Radical Are You?

This unit focuses on simplifying radical expressions and performing operations involving radicals.

Unit Focus

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Algebra Body of Knowledge

Standard 6: Radical Expressions and Equations

- MA.912.A.6.1

Simplify radical expressions.

- MA.912.A.6.2

Add, subtract, multiply and divide radical expressions (square roots and higher).

Vocabulary

Use the vocabulary words and definitions below as a reference for this unit.
coefficient \qquad the number that multiplies the variable(s) in an algebraic expression Example: In $4 x y$, the coefficient of $x y$ is 4 . If no number is specified, the coefficient is 1 .
conjugate \qquad if $x=a+b$, then $a-b$ is the conjugate of x Example: The expressions $(a+\sqrt{b})$ and $(a-\sqrt{b})$ are conjugates of each other.
decimal number \qquad any number written with a decimal point in the number
Examples: A decimal number falls between two whole numbers, such as 1.5 , which falls between 1 and 2. Decimal numbers smaller than 1 are sometimes called decimal fractions, such as five-tenths, or $\frac{5}{10}$, which is written 0.5.
denominatorthe bottom number of a fraction, indicating the number of equal parts a whole was divided into
Example: In the fraction $\frac{2}{3}$ the denominator is 3 , meaning the whole was divided into 3 equal parts.
digit \qquad any one of the 10 symbols $0,1,2,3,4,5,6,7,8$, or 9
distributive property \qquad the product of a number and the sum or difference of two numbers is equal to the sum or difference of the two products
Examples: $\quad x(a+b)=a x+b x$ $5(10+8)=5 \bullet 10+5 \bullet 8$
expression
a mathematical phrase or part of a number sentence that combines numbers, operation signs, and sometimes variables
Examples: $4 r^{2} ; 3 x+2 y ; \sqrt{25}$
An expression does not contain equal (=) or inequality ($<,>, \leq, \geq$, or \neq) signs.
factor \qquad a number or expression that divides evenly into another number; one of the numbers multiplied to get a product
Examples: 1, 2, 4, 5, 10, and 20 are factors of 20 and $(x+1)$ is one of the factors of $\left(x^{2}-1\right)$.

FOIL method
a pattern used to multiply two binomials; multiply the first, outside, inside, and last terms:

F First terms
O Outside terms
I Inside terms
L Last terms.
Example:

fractionany part of a whole
Example: One-half written in fractional form is $\frac{1}{2}$.
irrational number \qquad a real number that cannot be expressed as a ratio of two integers
Example: $\sqrt{2}$
like terms
terms that have the same variables and the same corresponding exponents Example: In $5 x^{2}+3 x^{2}+6$, the like terms are $5 x^{2}$ and $3 x^{2}$.
numerator \qquad the top number of a fraction, indicating the number of equal parts being considered Example: In the fraction $\frac{2}{3}$, the numerator is 2 .
perfect square \qquad a number whose square root is a whole number
Example: 25 is a perfect square because $5 \times 5=25$.
product \qquad the result of multiplying numbers together Example: In $6 \times 8=48$, the product is 48 .
radical
.an expression that has a root (square root, cube root, etc.)
Example: $\sqrt{25}$ is a radical
Any root can be specified by an index number, b, in the form $\sqrt[b]{a}$ (e.g., $\sqrt[3]{8}$).
A radical without an index number is understood to be a square root.

radical expression \qquad a numerical expression containing a radical sign Examples: $\sqrt{25} \quad 2 \sqrt{25}$
radical sign ($\sqrt{ }$) \qquad the symbol (\checkmark) used before a number to show that the number is a radicand

rationalizing

the denominator \qquad a method used to remove or eliminate radicals from the denominator of a fraction
rational number \qquad a number that can be expressed as a ratio $\frac{a}{b}$, where a and b are integers and $b \neq 0$
simplest radical form \qquad an expression under the radical sign that contains no perfect squares greater than 1, contains no fractions, and is not in the denominator of a fraction Example: $\sqrt{27}=\sqrt{9 \cdot 3}=\sqrt{9} \cdot \sqrt{3}=3 \sqrt{3}$
simplify an expressionto perform as many of the indicated operations as possible
square root \qquad a positive real number that can be multiplied by itself to produce a given number Example: The square root of 144 is 12 or $\sqrt{144}=12$.
terma number, variable, product, or quotient in an expression
Example: In the expression $4 x^{2}+3 x+x$, the terms are $4 x^{2}, 3 x$, and x.
variable \qquad any symbol, usually a letter, which could represent a number
whole numbers \qquad the numbers in the set $\{0,1,2,3,4, \ldots\}$

Unit 5: How Radical Are You?

Introduction

We will see that radical expressions can be rewritten to conform to the mathematical definitions of simplest terms. We will then be able to perform the operations of addition, subtraction, multiplication and division on these reformatted expressions. We will also explore the effects of multiplying a radical expression by its conjugate.

Lesson One Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Algebra Body of Knowledge

Standard 6: Radical Expressions and Equations

- MA.912.A.6.1

Simplify radical expressions.

Simplifying Radical Expressions

A radical expression is any mathematical expression that contains a square root symbol. Look at the following examples:

$$
\begin{array}{lllll}
\sqrt{5} & \frac{\sqrt{6}}{3} & \frac{3}{\sqrt{6}} & \frac{7}{5+\sqrt{2}} & \sqrt{36}
\end{array}
$$

Certain numbers can be reformatted to make them easier to work with. To do so, mathematicians have rules that make working with numbers uniform. If we all play by the same rules, we should all have the same outcome.

With this in mind, here are the two basic rules for working with square roots.

1. Never leave a perfect square factor under a radical sign ($\sqrt{ }$). Why? Because if you do, the radical expression is not simplified.
2. Never leave a radical sign in a denominator.

Why? Because if you do, the radical expression is not simplified.
Important! Do not use your calculator with the square roots. It will change the numbers to decimal approximations. We are looking for exact answers.

Let's explore each of the rules...one at a time.

Rule One

First, let's review the idea of perfect squares. Perfect squares happen whenever you multiply a number times itself. In the following examples,

$$
3 \times 3=9 \quad 7 \times 7=49 \quad 9 \times 9=81
$$

9,49 , and 81 are all perfect squares.

It will be helpful to learn the chart below. You will be asked to use these numbers many times in this unit and in real-world applications. The chart shows the perfect squares underneath the radical sign, then gives the square root of each perfect square.

Perfect Squares:
 Square Root = Whole Number
 $$
\begin{aligned} \sqrt{1} & =1 \\ \sqrt{4} & =2 \\ \sqrt{9} & =3 \\ \sqrt{16} & =4 \\ \sqrt{25} & =5 \\ \sqrt{36} & =6 \\ \sqrt{49} & =7 \\ \sqrt{64} & =8 \\ \sqrt{81} & =9 \\ \sqrt{100} & =10 \\ \sqrt{121} & =11 \\ \sqrt{144} & =12 \\ \sqrt{169} & =13 \\ \sqrt{196} & =14 \\ \sqrt{225} & =15 \\ \sqrt{256} & =16 \\ \sqrt{289} & =17 \\ \sqrt{324} & =18 \\ \sqrt{361} & =19 \\ \sqrt{400} & =20 \end{aligned}
$$

Any time you see a perfect square under a square root symbol, simplify it by writing it as the square root.

Sometimes, perfect squares are hidden in an expression and we have to search for them. At first glance, $\sqrt{45}$ looks as if it is in simplest radical form. However, when we realize that 45 has a factor that is a perfect square, we can rewrite it as

$$
\sqrt{45}=\sqrt{9} \bullet \sqrt{5} .
$$

From the information in the chart, we know that 9 is a perfect square and that

$$
\begin{aligned}
& \sqrt{9}=3 \text {. Therefore } \\
& \sqrt{45}=3 \cdot \sqrt{5} \text { or } 3 \sqrt{5} .
\end{aligned}
$$

Let's look at some examples.

$$
\begin{aligned}
\sqrt{18} & =\sqrt{9} \cdot \sqrt{2} \\
& =3 \cdot \sqrt{2} \\
& =3 \sqrt{2} \\
\sqrt{20} & =\sqrt{4} \cdot \sqrt{5} \\
& =2 \cdot \sqrt{5} \\
& =2 \sqrt{5}
\end{aligned}
$$

Now you try some in the following practices. Study the chart of perfect squares on page 367 before you start the practices.

Practice

Simplify each radical expression.
(《) Remember: Never leave a perfect square factor under a radical sign.

1. $\sqrt{50}$
2. $\sqrt{32}$
3. $\sqrt{27}$
4. $\sqrt{12}$
5. $\sqrt{125}$
6. $\sqrt{45}$
7. $\sqrt{64}$
8. $\sqrt{300}$
9. $\sqrt{13}$
10. $\sqrt{8}$

Rule Two

Now it's time to work on that second rule: never leave a square root in the denominator. Because if a square root is left in the denominator of a radical expression, the radical expression is not simplified.

If a fraction has a denominator that is a perfect square root, just rewrite the fraction using that square root. Let's look at examples.

$$
\frac{2}{\sqrt{36}}=\frac{2}{6}=\frac{1}{3} \quad \frac{4}{\sqrt{81}}=\frac{4}{9}
$$

Many times, however, that denominator will not be a perfect square root. In those cases, we have to reformat the denominator so that it is a perfect square root. This is called rationalizing the denominator or the bottom number of the fraction. To do this, we make it into a rational number by using a method to eliminate radicals from the denominator of a fraction. Remember, we aren't concerned about what may happen to the format of the numerator, just the denominator.

To reformat an irrational denominator (one with a square root in it), we find a number to multiply it by that will produce a perfect square root.

Follow the explanation of this example carefully.

$\frac{2}{\sqrt{7}}$	- Yikes! This denominator is irrational! I need to rationalize it.
$\frac{2}{\sqrt{7}} \bullet \frac{\sqrt{7}}{\sqrt{7}}$	- Look what happens if I multiply the denominator by itself. (Since, $\frac{\sqrt{7}}{\sqrt{7}}=1$, I have not changed the value of the original fraction.)
$\frac{2}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}}=\frac{2 \sqrt{7}}{\sqrt{49}}$	- Because I remember the perfect square roots from the chart on page 240 , I see that $\sqrt{49}$ is a perfect square root...and therefore rational!
$\frac{2}{\sqrt{7}}=\frac{2 \sqrt{7}}{\sqrt{49}}=\frac{2 \sqrt{7}}{7}$	- This may not look like a simpler expression than I started with, but it does conform to the second rule.

Follow along with this example.

$$
\frac{6}{\sqrt{3}}=\frac{6}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{6 \sqrt{3}}{\sqrt{9}}=\frac{6 \sqrt{3}}{3}=\frac{2 \sqrt{3}}{1}=2 \sqrt{3}
$$

In the above example, notice that we reduced the "real 6" and the "real 3," but not with the square root of 3 . Do not mix a rational number with an irrational number, sometimes referred to as a non-rational number when you are reducing...they are not like terms!

It's time for you to practice.

Practice

Simplify each radical expression.

I(I) Remember: Never leave a square root in the denominator.
Example: $\frac{6}{\sqrt{5}}=\frac{6}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{6 \sqrt{5}}{\sqrt{25}}=\frac{6 \sqrt{5}}{5}$
Show all your steps.

1. $\frac{7}{\sqrt{2}}$
2. $\frac{4}{\sqrt{3}}$
3. $\frac{5}{\sqrt{6}}$
4. $\frac{7}{\sqrt{10}}$
5. $\frac{1}{\sqrt{3}}$
6. $\frac{3}{\sqrt{7}}$
7. $\frac{3}{\sqrt{5}}$
8. $\frac{4}{\sqrt{11}}$
9. $\frac{5}{\sqrt{18}}$
10. $\frac{\sqrt{2}}{\sqrt{15}}$

Practice

Match each definition with the correct term. Write the letter on the line provided.
\qquad 1. a number whose square root is a whole number
2. an expression under the radical sign that contains no perfect squares greater than 1 , contains no fractions, and is not in the denominator of a fraction
3. the symbol $(\sqrt{ })$ used before a number to show that the number is a radicand
4. terms that have the same variables and the same corresponding exponents
5. a real number that cannot be expressed as a ratio of two integers
6. a number or expression that divides evenly into another number
7. a numerical expression containing a radical sign
8. a number that can be expressed as a ratio $\frac{a}{b}$, where a and b are integers and $b \neq 0$
9. a positive real number that can be multiplied by itself to produce a given number
A. factor
B. irrational number
C. like terms
D. perfect square
E. radical expression
F. radical sign
G. rational number
H. simplest radical form
I. square root

Lesson Two Purpose

Algebra Body of Knowledge

Standard 6: Radical Expressions and Equations

- MA.912.A.6.2

Add, subtract, multiply and divide radical expressions (square roots and higher).

Add and Subtract Radical Expressions

We can add or subtract radical expressions only when those radical expressions match. For instance,

$$
5 \sqrt{2}+6 \sqrt{2}=11 \sqrt{2}
$$

Notice that we did not change the $\sqrt{2}$'s. We simply added the coefficients because they had matching radical parts.

Remember: Coefficients are any factor in a term. Usually, but not always, a coefficient is a number instead of a variable or a radical.

The same is true when we subtract radical expressions.

$$
5 \sqrt{7}-3 \sqrt{7}=2 \sqrt{7}
$$

At first glance, it may sometimes appear that there are no matching numbers under the radical sign. But, if we simplify the expressions, we often find radical expressions that we can add or subtract.

Look at this example.

$$
3 \sqrt{8}+5 \sqrt{2}-4 \sqrt{32}
$$

Notice that $\sqrt{8}$ and $\sqrt{32}$ each have perfect square factors and can be simplified. Follow the simplification process step by step and see what happens.

$$
\begin{aligned}
& \begin{array}{l}
3 \sqrt{8}+5 \sqrt{2}-4 \sqrt{32}= \\
3 \sqrt{4} \sqrt{2}+5 \sqrt{2}-4 \sqrt{16} \sqrt{2}= \\
3 \bullet 2 \sqrt{2}+5 \sqrt{2}-4 \bullet 4 \sqrt{2}= \\
6 \sqrt{2}+5 \sqrt{2}-16 \sqrt{2}= \\
\text { We found the perfect square factors of } \sqrt{8} \\
\text { and } \sqrt{32} \text { and rewrote the problem. }
\end{array} \\
& -5 \sqrt{2} \\
& \begin{array}{l}
\text { Next, we simplified the perfect square roots. } \\
\text { We multiplied the new factors for each } \\
\text { coefficient. }
\end{array} \\
& \begin{array}{l}
\text { Finally, we add and subtract matching } \\
\text { radical expressions, in order, from left to } \\
\text { right. }
\end{array}
\end{aligned}
$$

When Radical Expressions Don't Match or Are Not in Radical Form

What happens when radical expressions don't match, or there is a number that is not in radical form? Just follow the steps on the previous pages and leave your answer, with appropriate terms in descending order. Watch this!

$$
\begin{gathered}
\sqrt{75}+\sqrt{27}-\sqrt{16}+\sqrt{80}= \\
\sqrt{25 \sqrt{3}}+\sqrt{9} \sqrt{3}-4+\sqrt{16} \sqrt{5}= \\
5 \sqrt{3}+3 \sqrt{3}-4+4 \sqrt{5}= \\
8 \sqrt{3}-4+4 \sqrt{5}= \\
8 \sqrt{3}+4 \sqrt{5}-4 \quad \text { rewritten in descending order }
\end{gathered}
$$

Practice

Simplify each of the following. Refer to pages 376-378 as needed.

1. $4 \sqrt{7}+10 \sqrt{7}$
2. $-5 \sqrt{2}+7 \sqrt{2}-4 \sqrt{2}$
3. $3 \sqrt{7}+5-\sqrt{7}$
4. $2 \sqrt{27}-4 \sqrt{12}$

5. $\sqrt{27}+\sqrt{12}-\sqrt{48}$

Practice

Simplify each of the following. Refer to pages 376-378 as needed.

1. $-3 \sqrt{5}+4 \sqrt{2}-\sqrt{5}+\sqrt{8}$
2. $\sqrt{81}+\sqrt{24}-\sqrt{9}+\sqrt{54}$
3. $\sqrt{50}-\sqrt{45}+\sqrt{32}-\sqrt{80}$
4. $5 \sqrt{7}+2 \sqrt{3}-4 \sqrt{7}-\sqrt{27}$
5. $\sqrt{200}-\sqrt{8}+3 \sqrt{72}-6$
6. $12-3 \sqrt{5}+2 \sqrt{144}-\sqrt{20}$
7. $\sqrt{18}+\sqrt{48}-\sqrt{32}-\sqrt{27}$

Lesson Three Purpose

Algebra Body of Knowledge

Standard 6: Radical Expressions and Equations

- MA.912.A.6.2

Add, subtract, multiply and divide radical expressions (square roots and higher).

Multiply and Divide Radical Expressions

Radical expressions don't have to match when we multiply or divide them. The following examples show that we simply multiply or divide the digits under the radical signs and then simplify our results, if possible.

Example 1

$$
\sqrt{5} \times \sqrt{6}=\sqrt{30}
$$

Example 2

$$
\sqrt{8} \times \sqrt{3}=\sqrt{24}=\sqrt{4} \sqrt{6}=2 \sqrt{6}
$$

Example 3

$$
\sqrt{18} \times \sqrt{2}=\sqrt{36}=6
$$

Example 4

$$
\frac{\sqrt{12}}{\sqrt{3}}=\sqrt{4}=2
$$

Example 5

$$
\frac{\sqrt{20}}{\sqrt{10}}=\sqrt{2}
$$

Example 6

$$
\frac{\sqrt{8}}{\sqrt{24}}=\frac{\sqrt{1}}{\sqrt{3}} \quad \text { (we must simplify this) } \rightarrow \frac{\sqrt{1}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{\sqrt{9}}=\frac{\sqrt{3}}{3}
$$

After studying the examples above, try the following practice.

Practice

Simplify each of the following. Refer to the examples on the previous page as needed.

1. $\sqrt{5} \cdot \sqrt{10}$
2. $\sqrt{2} \cdot \sqrt{50}$
3. $\sqrt{75} \cdot \sqrt{3}$
4. $\sqrt{6} \cdot \sqrt{10}$
5. $\frac{\sqrt{30}}{\sqrt{2}}$
6. $\frac{\sqrt{8}}{\sqrt{32}}$
7. $\frac{\sqrt{6}}{\sqrt{10}}$
8. $\frac{\sqrt{75}}{\sqrt{3}}$
9. $\frac{\sqrt{72}}{\sqrt{18}}$
10. $\frac{\sqrt{5}}{\sqrt{10}}$

Working with a Coefficient for the Radical

What happens when there is a coefficient for the radical? It is important to multiply or divide the radical numbers together separately from the coefficients. Then simplify each answer. Look at the following examples.

Example 1

multiply coefficients

Example 2

$$
\begin{aligned}
6 \sqrt{3} \bullet \sqrt{3}=6 \sqrt{9}=6 \bullet 3=18 \backsim & \text { Remember: If there is no } \\
& \text { written coefficient, then it } \\
& \text { is understood to be a } 1 .
\end{aligned}
$$

Example 3

$$
\frac{2 \sqrt{14}}{6 \sqrt{7}}=\frac{1 \sqrt{2}}{3}=\frac{\sqrt{2}}{3}
$$

Example 4

$$
\frac{12 \sqrt{5}}{6 \sqrt{10}}=\frac{2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{2 \sqrt{2}}{\sqrt{4}}=\frac{2 \sqrt{2}}{2}=\sqrt{2}
$$

Example 5

$$
\frac{\sqrt{6}-\sqrt{12}}{\sqrt{3}}=\frac{\sqrt{6}}{\sqrt{3}}-\frac{\sqrt{12}}{\sqrt{3}}=\sqrt{2}-\sqrt{4}=\sqrt{2}-2
$$

Now it's time to practice on the following page.

Practice

Simplify each of the following. Refer to the examples on the previous page as needed.

1. $5 \sqrt{3} \cdot 6 \sqrt{5}$
2. $2 \sqrt{5} \cdot 4 \sqrt{2}$
3. $8 \sqrt{2} \cdot 5 \sqrt{3}$
4. $2 \sqrt{7} \bullet \sqrt{7}$

5. $5 \sqrt{6} \cdot 4 \sqrt{2}$

Practice

Simplify each of the following. Refer to the examples on page 386 as needed.

1. $\frac{\sqrt{15}-\sqrt{20}}{\sqrt{5}}$
2. $\frac{\sqrt{8}-\sqrt{12}}{\sqrt{2}}$
3. $\frac{\sqrt{30}-\sqrt{50}}{\sqrt{10}}$
4. $\frac{3 \sqrt{18}}{\sqrt{3}}$
5. $\frac{4 \sqrt{6}}{6 \sqrt{2}}$
6. $\frac{10 \sqrt{8}}{12 \sqrt{12}}$
7. $\frac{\sqrt{75}-\sqrt{50}}{\sqrt{25}}$

Lesson Four Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

Algebra Body of Knowledge

Standard 6: Radical Expressions and Equations

- MA.912.A.6.2

Add, subtract, multiply and divide radical expressions (square roots and higher).

Multiple Terms and Conjugates

Sometimes it is necessary to multiply or divide radical expressions with more than one term. To multiply radicals with multiple terms by a single term, we use the old reliable distributive property. See how the distributive property works for these examples.

Example 1

$$
\begin{aligned}
& 6(\sqrt{5}+\sqrt{3})= \\
& 6 \sqrt{5}+6 \sqrt{3}
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& \sqrt{3(2 \sqrt{5}}-4 \sqrt{3})= \\
& 2 \sqrt{15}-4 \sqrt{9}= \\
& 2 \sqrt{15}-4 \cdot 3= \\
& 2 \sqrt{15}-12
\end{aligned}
$$

Example 3

$$
\begin{aligned}
& 6 \sqrt{3}(2 \sqrt{2}+5 \sqrt{6})= \\
& 12 \sqrt{6}+30 \sqrt{18}= \\
& 12 \sqrt{6}+30 \sqrt{9} \sqrt{2}= \\
& 12 \sqrt{6}+30 \cdot 3 \sqrt{2}= \\
& 12 \sqrt{6}+90 \sqrt{2}
\end{aligned}
$$

Practice

Simplify each of the following. Refer to the examples on the previous pages as needed.

1. $2(\sqrt{6}+\sqrt{5})$
2. $\sqrt{2}(\sqrt{6}+\sqrt{5})$
3. $3 \sqrt{2}(5 \sqrt{3}-4 \sqrt{2})$
4. $6(3 \sqrt{8}-5 \sqrt{2})$
5. $\sqrt{6}(3 \sqrt{8}-5 \sqrt{2})$

6. $8 \sqrt{6}(2 \sqrt{6}+5 \sqrt{8})$

The FOIL Method

Another reliable method we can use when multiplying two radical expressions with multiple terms is the FOIL method: multiplying the first, outside, inside, and last terms. We use that same process in problems like these.

Example 1

$$
\begin{gathered}
\mathbf{F} \\
\sqrt{6} \bullet \sqrt{3}+\sqrt{6} \bullet 4-5 \bullet \sqrt{3}-5 \bullet 4= \\
\text { O } \\
\text { Multiply the first terms, the } \\
\text { outside terms, the inside } \\
\text { terms, and then the last terms. }
\end{gathered}
$$

$\sqrt{18}+4 \sqrt{6}-5 \sqrt{3}-20=$	
$3 \sqrt{2}+4 \sqrt{6}-5 \sqrt{3}-20$	\longleftarrowCarefully write out the products.
Simplify each term and combine like terms (if needed).	

Example 2

\longleftarrow Notice that no term has a perfect square as a factor. Therefore, there is no further simplifying to be done.

Time to try the following practice.

Practice

Simplify each of the following. Refer to the examples on page 395 as needed.

1. $(\sqrt{6}-2)(\sqrt{5}+7)$
2. $(5-\sqrt{3})(2+\sqrt{7})$
3. $(4+5 \sqrt{2})(2-\sqrt{2})$
4. $(2 \sqrt{5}-3)(\sqrt{5}+6)$
5. $(4-3 \sqrt{10})(2-\sqrt{10})$
6. $(2 \sqrt{7}-3)(5 \sqrt{7}+1)$
7. $(\sqrt{5}-7)(3 \sqrt{5}+7)$
8. $(\sqrt{10}-\sqrt{6})(\sqrt{7}-\sqrt{13})$
9. $(3 \sqrt{6}+2 \sqrt{3})(\sqrt{5}-2)$
10. $(4 \sqrt{3}-\sqrt{5})(3 \sqrt{3}-\sqrt{5})$
11. $(3+\sqrt{10})(3-\sqrt{10})$
12. $(6 \sqrt{5}+4)(6 \sqrt{5}-4)$

Two-Term Radical Expressions

At the beginning of this unit, we learned that there are two rules we must remember when simplifying a radical expression. Rule one requires that we never leave a perfect square factor under a radical sign. Rule two insists that we never leave a radical in the denominator. With that in mind, let's see what to do with two-term radical expressions.

In a problem like $\frac{2+\sqrt{7}}{5-\sqrt{6}}$, we see that we must rationalize the denominator (reformat it without using a square root). At first glance, it may seem to you that multiplying that denominator by itself makes the square roots disappear. But when we try that, we realize that new square roots appear as a result of the FOILing.

$$
\begin{aligned}
& \text { (5- } \sqrt{6}(5-\sqrt{6})= \\
& 25-5 \sqrt{6}-5 \sqrt{6}+\sqrt{6} \sqrt{6}= \\
& 25-10 \sqrt{6}+6
\end{aligned}
$$

So there must be a better way to rationalize this denominator. Try multiplying $(5-\sqrt{6})$ by its conjugates $(5+\sqrt{6})$. These numbers are conjugates because they match, except for the signs between the terms. Notice that one has a " + " and the other has a " - ".

$$
\begin{aligned}
& \text { (5- } \underbrace{\sqrt{6})(5+\sqrt{6}})= \\
& 25+5 \sqrt{6}-5 \sqrt{6}-\sqrt{6} \sqrt{6}= \\
& 25-\sqrt{36}= \\
& 25-6=
\end{aligned}
$$

Remember, we only need to rationalize the denominator. It is acceptable to leave simplified square roots in the numerator. Now, let's take a look at the entire problem.

$$
\begin{gathered}
\frac{2+\sqrt{7}}{5-\sqrt{6}} \cdot \frac{5+\sqrt{6}}{5+\sqrt{6}}= \\
\begin{array}{c}
\frac{5+\sqrt{6}}{5+\sqrt{6}}=1 \\
\text { multiplying it by } 1
\end{array} \\
\frac{(2)(5)+2 \sqrt{6}+5 \sqrt{7}+\sqrt{42}}{(5)(5)+5 \sqrt{6}-5 \sqrt{6}-\sqrt{6} \sqrt{6}}=\begin{array}{l}
\text { reformat the fraction by } \\
\text { FOIL the numerator and } \\
\text { denominator }
\end{array} \\
\frac{10+2 \sqrt{6}+5 \sqrt{7}+\sqrt{42}}{25-\sqrt{36}}=\longleftarrow \text { simplify } \\
\frac{10+2 \sqrt{6}+5 \sqrt{7}+\sqrt{42}}{25-6}=\longleftarrow \text { simplify again } \\
\frac{10+2 \sqrt{6}+5 \sqrt{7}+\sqrt{42}}{19}
\end{gathered}
$$

Follow along with this one!

$$
\begin{aligned}
& \frac{3+\sqrt{2}}{4+\sqrt{8}} \cdot \frac{4-\sqrt{8}}{4-\sqrt{8}}= \\
& \begin{array}{c}
\frac{4-\sqrt{8}}{4-\sqrt{8}}=1 \\
\text { multiplying it by } 1
\end{array} \\
& \frac{(3)(4)-3 \sqrt{8}+4 \sqrt{2}-\sqrt{16}}{(4)(4)-4 \sqrt{8}+4 \sqrt{8}-\sqrt{8} \sqrt{8}}=\begin{array}{c}
\text { reformat by } \\
\text { denominator }
\end{array} \\
& \frac{12-3 \sqrt{4} \sqrt{2}+4 \sqrt{2}-\sqrt{16}}{16-\sqrt{64}}=\longleftarrow \text { simplify } \\
& \frac{12-3 \cdot 2 \sqrt{2}+4 \sqrt{2}-4}{16-8}=\longleftarrow^{\longleftarrow} \text { and again } \\
& \frac{12-6 \sqrt{2}+4 \sqrt{2}-4}{8}= \\
& \frac{8-2 \sqrt{2}}{8}=\frac{2(4-\sqrt{2})}{8}= \\
& \frac{4-\sqrt{2}}{4}
\end{aligned}
$$

With more practice, you will be able to mentally combine some of those simplifying steps and finish sooner.

So let's practice on the following page.

Practice

Simplify each of the following.

1. $\frac{\sqrt{5}+2}{\sqrt{3}-1}$
2. $\frac{\sqrt{6}+5}{3 \sqrt{6}-2}$
3. $\frac{5 \sqrt{2}+7}{\sqrt{2}-3}$
4. $\frac{\sqrt{7}-\sqrt{5}}{\sqrt{5}+\sqrt{7}}$
5. $\frac{\sqrt{6}-\sqrt{3}}{\sqrt{6}+\sqrt{3}}$
6. $\frac{\sqrt{2}+\sqrt{3}}{2 \sqrt{2}-5}$
7. $\frac{\sqrt{5}+7}{\sqrt{5}-3}$
8. $\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-3 \sqrt{5}}$

Practice

Simplify each of the following.

1. $\frac{4-\sqrt{7}}{3+\sqrt{7}}$
2. $\frac{4 \sqrt{2}-\sqrt{3}}{\sqrt{2}+3 \sqrt{3}}$
3. $\frac{6 \sqrt{5}-2}{\sqrt{5}+\sqrt{2}}$
4. $\frac{6 \sqrt{2}+5}{1+\sqrt{5}}$
5. $\frac{5+3 \sqrt{2}}{1-\sqrt{2}}$
6. $\frac{\sqrt{6}+2}{2 \sqrt{6}+1}$
7. $\frac{\sqrt{5}+2 \sqrt{7}}{\sqrt{5}+\sqrt{7}}$

Practice

Match each symbol or expression with the appropriate description.
\qquad 1. 7
A. coefficient in the expression $5 \sqrt{x}$
2. $\sqrt{ }$
B. conjugate of $x+4$
3. $\frac{2}{\sqrt{7}}=\frac{2 \sqrt{7}}{\sqrt{49}}=\frac{2 \sqrt{7}}{7}$
C. perfect square of 11
4. $x-4$
D. radical expression
5. 5
E. radical sign
6. $3 x \sqrt{6}$
F. rationalizing the denominator
7. 121
G. square root of 49

Unit Review

Simplify each of the following.

1. $\sqrt{75}$
2. $\frac{5}{\sqrt{8}}$
3. $-\sqrt{40}$
4. $\frac{1}{\sqrt{7}}$
5. $5 \sqrt{27}$
6. $\sqrt{\frac{3}{8}}$
7. $\frac{3}{\sqrt{36}}$
8. $\frac{5 \sqrt{6}}{\sqrt{5}}$
9. $6 \sqrt{3}-8 \sqrt{3}$
10. $4 \sqrt{8}-5 \sqrt{2}+3 \sqrt{32}$
11. $\sqrt{75}-\sqrt{45}-\sqrt{80}$
12. $2 \sqrt{50}-3 \sqrt{45}+\sqrt{32}+\sqrt{80}$
13. $\sqrt{5}+\sqrt{2}+\sqrt{8}+\sqrt{125}$

14. $(3+5 \sqrt{6})(3-5 \sqrt{6})$
15. $\frac{\sqrt{2}+\sqrt{6}}{\sqrt{2}-\sqrt{6}}$
16. $\frac{5+2 \sqrt{3}}{2+\sqrt{5}}$
17. $\frac{\sqrt{6}-1}{2 \sqrt{6}+2}$

Unit 6: Extreme Fractions

This unit will illustrate the difference between shape and size as they relate to the concepts of congruency and similarity.

Unit Focus

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Algebra Body of Knowledge

Standard 5: Radical Expressions and Equations

- MA.912.A.5.1

Simplify algebraic ratios.

- MA.912.A.5.4

Solve algebraic proportions.

Vocabulary

Use the vocabulary words and definitions below as a reference for this unit.
angle (\angle) \qquad two rays extending from a common endpoint called the vertex; measures of angles are described in degrees $\left({ }^{\circ}\right)$

circle
the set of all points in a plane that are all the same distance from a given point called the center

congruent ($\xlongequal{\cong}$) \qquad having exactly the same shape and size
corresponding \qquad in the same location in their respective figures
corresponding
angles and sides \qquad the matching angles and sides in similar figures
cross multiplication
a method for solving and checking proportions; a method for finding a missing numerator or denominator in equivalent fractions or ratios by making the cross products equal
Example: Solve this proportion by doing the following.

$$
\begin{aligned}
\frac{n}{9} & =\frac{8}{12} \\
\frac{n}{9} & \frac{8}{12} \\
12 \times n & =9 \times 8 \\
12 n & =72 \\
n & =\frac{72}{12} \\
n & =6
\end{aligned}
$$

Solution:

$$
\frac{(6)}{9}=\frac{8}{12}
$$

integersthe numbers in the set
$\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$
length (l) \qquad a one-dimensional measure that is the measurable property of line segments
numerator \qquad the top number of a fraction, indicating the number of equal parts being considered Example: In the fraction $\frac{2}{3}$, the numerator is 2 .
perimeter (P) \qquad the distance around a figure
polygon \qquad a closed-plane figure, having at least three sides that are line segments and are connected at their endpoints
Examples: triangle (3 sides), quadrilateral (4 sides), pentagon (5 sides), hexagon (6 sides), heptagon (7 sides), octagon (8 sides); concave, convex
Δ

proportion \qquad a mathematical sentence stating that two ratios are equal
Example: The ratio of 1 to 4 equals 25 to 100 , that is $\frac{1}{4}=\frac{25}{100}$.
ratio \qquad the comparison of two quantities Example: The ratio of a and b is $a: b$ or $\frac{a}{b}$, where $b \neq 0$.
regular polygon
a polygon that is both equilateral (all sides congruent) and equiangular (all angles congruent)
rounded number \qquad a number approximated to a specified place Example: A commonly used rule to round a number is as follows.

- If the digit in the first place after the specified place is 5 or more, round $u p$ by adding 1 to the digit in the specified place ($\underset{6}{6} 1$ rounded to the nearest hundred is 500).
- If the digit in the first place after the specified place is less than 5 , round down by not changing the digit in the specified place $\stackrel{\sim}{4}_{4}$ rounded to the nearest hundred is 400).
scale factor \qquad the constant that is multiplied by the lengths of each side of a figure that produces an image that is the same shape as the original figure
side
the edge of a polygon, the face of a polyhedron, or one of the rays that make up an angle
Example: A triangle has three sides.

similar figures (~) \qquad figures that are the same shape, have corresponding congruent angles, and have corresponding sides that are proportional in length
solve \qquad to find all numbers that make an equation or inequality true
trapezoid \qquad a quadrilateral with just one pair of opposite sides parallel

triangle \qquad a polygon with three sides

value (of a variable) any of the numbers represented by the variable
variable \qquad any symbol, usually a letter, which could represent a number

Unit 6: Extreme Fractions

Introduction

We should be able to see that changing the size of a geometric figure can occur without changing the shape of a figure. Working with ratios and proportions will help us understand the relationship between congruence and similarity.

Lesson One Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

Algebra Body of Knowledge

Standard 5: Radical Expressions and Equations

- MA.912.A.5.1

Simplify algebraic ratios.

- MA.912.A.5.4

Solve algebraic proportions.

Ratios and Proportions

Ratio is another word for a fraction. It is the comparison of two quantities: the numerator (top number of a fraction) and the denominator (bottom number of a fraction). For instance, if a classroom has 32 students and 20 of them are girls, we can say that the ratio of the number of girls to the number of students in the class is $\frac{20}{32}=\frac{5}{8}$ or 5:8. There are several other comparisons we can make using the information. We could compare the number of boys to the number of students, $\frac{12}{32}=\frac{3}{8}$.

What about the number of boys to the number of girls? $\frac{12}{20}=\frac{3}{5}$

Or, the number of girls to the number of boys? $\frac{20}{12}=\frac{5}{3}$

When two ratios are equal to each other, we have formed a proportion. A proportion is a mathematical sentence stating that two ratios are equal.

$$
\frac{6}{9}=\frac{2}{3}
$$

There are several properties of proportions that will be useful as we continue through this unit.

- We could switch the 6 with the 3 and still have a true proportion (Example 1).
- We could switch the 2 with the 9 and still have a true proportion (Example 2).
- We could even flip both fractions over and still have a true proportion (Example 3).

Example 1

$$
\begin{aligned}
& \frac{6}{9}=\frac{2}{(3)} \\
& \frac{\mathfrak{3}}{9}=\frac{2}{(6)}
\end{aligned}
$$

Example 2

$\frac{6}{(9)}=\frac{(2)}{3}$
$\frac{6}{(2)}=\frac{(9)}{3}$

Example 3

$$
\begin{aligned}
& \frac{6}{9}=\frac{2}{3} \\
& \frac{9}{6}=\frac{3}{2}
\end{aligned}
$$

Proportions are also very handy to use for problem solving. We use a process that involves cross multiplying, then solve the resulting equation. Look at the example below as we solve the equation and find the value of the variable.

$$
\begin{aligned}
& \frac{3}{5}=\frac{x}{x+6} \\
& \frac{3}{5}=\frac{x}{x+6} \\
& 3(x+6)=5 x \\
& \begin{array}{l}
3(x+6)=5 x \\
3 x+18=5 x
\end{array} \\
& \longleftarrow \text { cross multiply } \\
& \leftrightarrows \text { distribute } \\
& \begin{aligned}
3 x-3 x+18 & =5 x-3 x ~ \leftarrow \text { subtract } 3 x \text { from each side } \\
18 & =2 x
\end{aligned} \\
& \frac{18}{2}=\frac{2 x}{2} \quad \leftarrow \text { divide each side by } 2 \\
& 9=x \\
& \text { (distributive property) }
\end{aligned}
$$

Check your answer. Does $\frac{9}{9+6}=\frac{3}{5}$? Yes, $\frac{9}{15}=\frac{3}{5}$, so 9 is the correct value for x.

Try the following practice.

Practice

Find the value of the variable in each of the following. Refer to previous pages as needed. Check your answers. Show all your work.

1. $\frac{2}{x+1}=\frac{4}{x}$
2. $\frac{6}{z-2}=\frac{12}{4}$
3. $\frac{3}{2 x-1}=\frac{7}{3 x+1}$
4. $\frac{2}{x-9}=\frac{9}{x+12}$
5. $\frac{6}{x-1}=\frac{5}{x+2}$
6. $\frac{x-3}{18}=\frac{x+1}{30}$
7. $\frac{x-8}{x}=\frac{5}{7}$
8. $\frac{x+12}{2 x+3}=\frac{5}{3}$
9. $\frac{2 x}{x+3}=\frac{3}{2}$

Using Proportions Algebraically

We can use proportions in word problems as well. Here's an example.
In Coach Coffey's physical education class, the ratio of boys to girls is 3 to 4 . If there are 12 boys in the class, how many girls are there?

When setting up proportions, you must have a plan and be consistent when you write the ratios. If you set up one ratio as $\frac{\text { boys }}{\text { girls }}$, the you must set up the other ratio in the same order, as $\frac{\text { boys }}{\text { girls }}$.

$$
\begin{array}{ll}
\frac{3}{4}=\frac{12}{x} & \text { notice that both fractions indicate } \frac{\text { boys }}{\text { girls }} \\
\frac{3}{4} \frac{12}{x} & \text { cross multiply } \\
3 x=4 \times 12 & \text { simplify } \\
3 x=48 & \text { divide each side by } 3 \\
\frac{3 x}{3}=\frac{48}{3} \\
x=16
\end{array}
$$

Check your answer. Does $\frac{12}{16}=\frac{3}{4}$? Yes, so 16 is the correct answer.
Now it is your turn to practice on the following page.

Practice

Use proportions to solve the following. Refer to the previous pages as needed. Check your answers. Show all your work.

1. The ratio of two integers $\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$ is $13: 6$. The smaller integer is 54 . Find the larger integer.

Answer: \qquad
2. The ratio of two integers is $7: 11$. The larger integer is 187 . Find the smaller integer.

Answer: \qquad
3. A shopkeeper makes $\$ 85$ profit when he sells $\$ 500$ worth of clothing. At the same rate of profit, what will he make on a $\$ 650$ sale?

Answer: \$ \qquad
4. A baseball player made 43 hits in 150 times at bat. At the same rate, how many hits can he expect in 1,050 times at bat?

Answer: \qquad

5. The cost of a 1,600 -mile bus trip is $\$ 144$. At the same rate per mile, what will be the cost of a 650 -mile trip?

Answer: \$ \qquad
6. On a map, 19 inches represent 250 miles. What length on the map will represent 600 miles?

Answer: \qquad miles

Practice

Match each definition with the correct term. Write the letter on the line provided.
\qquad 1. the comparison of two quantities
\qquad
\qquad
\qquad 4. to find all numbers that make an equation or inequality true
5. the bottom number of a fraction, indicating the number of equal parts a whole was divided into
6. the top number of a fraction, indicating the number of equal parts being considered
7. a mathematical sentence stating G. length (l) that two ratios are equal
8. $x(a+b)=a x+b x \quad$ H. numerator $5(10+8)=5 \cdot 10+5 \cdot 8$
9. any part of a whole
10. a one-dimensional measure that is the measurable property of line segments
11. a method for solving and
checking proportions; a method for finding a missing numerator or denominator in equivalent fractions or ratios by making the cross products equal
A. cross multiplication
B. denominator
C. distributive property
D. equation
E. fraction
F. integers
I. proportion
J. ratio
K. solve

Lesson Two Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Algebra Body of Knowledge

Standard 5: Radical Expressions and Equations

- MA.912.A.5.4

Solve algebraic proportions.

Similarity and Congruence

Geometric figures that are exactly the same shape, but not necessarily the same size, are called similar figures (\sim). In similar figures, all the pairs of corresponding angles are the same measure, and all the pairs of corresponding sides are in the same ratio. This ratio, in its reduced form, is called the scale factor. When all pairs of corresponding sides are in the same ratio as the scale factor, we say that the sides are in proportion.

Some geometric figures are always similar.

1. All triangles whose angles' (\angle) measures of degree $\left(^{\circ}\right.$) are $45^{\circ}, 45^{\circ}$, and 90° are
 similar to each other.
2. All triangles whose angles' (\angle) measures of degree $\left({ }^{\circ}\right)$ are $30^{\circ}, 60^{\circ}$, and 90° are similar to each other.

3. All regular polygons with the same number of sides are similar to each other.

Remember: A regular polygon is a polygon that is equilateral and equiangular. Therefore, all its sides are congruent (\cong) and all angles are congruent (\cong).

Note: Circles seem to be similar, but since they have no angle measures, we don't include them in this group.

Look at each pair of figures below. Determine if they are similar or not to each other.

- Write yes if they are similar.
- Write no if they are not similar.
- If they are similar, write the scale factor.

The first one has been done for you.
yes: 3:1
1.

\qquad 2.

3.

Using Proportions Geometrically

If we know two shapes are similar, and we know some of the lengths, we often can find some of the other measures of those shapes. Look at the two similar figures below. We have labeled the trapezoids TALK and SING.

Trapezoids TALK and SING

By locating the corresponding angles, we can say that
Trapezoid TALK ~ Trapezoid SING.
Note: ~ is the symbol for similar.
To find the values of x, y, and z, we must first find a pair of corresponding sides with lengths given.

- Side $T A$ and side $S I$ are a pair of corresponding sides.
- It is given that $T A=3$ and $S I=6$.
- So, we can set up a ratio $\frac{T A}{S I}=\frac{3}{6}$.
- When we reduce the ratio, we get the scale factor, which is $\frac{1}{2}$.
- This means that every length in TALK is one-half the corresponding length in SING.

Now we can use the scale factor to make proportions and find x, y, and z. Remember to be consistent as you set up the proportions. Since my scale factor was determined by a comparison of TALK to SING, I will continue in that order: $\left(\frac{T A L K}{\operatorname{SING}}\right)$.

Trapezoids TALK and SING

$$
\begin{aligned}
\frac{1}{2} & =\frac{x}{10} \\
2 x & =10 \\
x & =5
\end{aligned}
$$

$$
\frac{1}{2}=\frac{y}{8}
$$

$$
\frac{1}{2}=\frac{4}{z}
$$

$$
2 y=8
$$

$$
8=1 z
$$

$$
y=4
$$

$$
8=z
$$

What is the perimeter (\mathbf{P}), or distance around the polygon, of TALK?
Did you get 16 ?
Can you guess the perimeter of SING?
If you guessed 32, you are correct.
Does it make sense that the perimeters should be in the same ratio as the scale factor?

Yes, because the perimeters of TALK and SING are corresponding lengths. In addition, all corresponding lengths in similar figures are in proportion!

Practice

Find the following for each pair of similar figures below.

- scale factor (SF)
- $x=$
- $y=$
- $P_{1}=$ perimeter of figure 1
- $P_{2}=$ perimeter of figure 2

Refer to the previous pages as needed. The first one has been done for you.
1.
figure 1 figure 2

SF $1: 2 ; x=10 ; y=6 \quad P_{1} 16$
2.
figure 1

SF \qquad ; $x=$ \qquad ; $y=$ \qquad P_{1} \qquad
3.

figure 2

SF \qquad ; $x=$ \qquad ; $y=$ \qquad P_{2}
4. figure 1

figure 2

SF \qquad ; $x=$ \qquad ; $y=$ \qquad
5. figure 1 figure 2

SF \qquad ; $x=$ \qquad ; $y=$ \qquad P_{1}
6.
SF \qquad ; $x=$ \qquad ; $y=$ \qquad P_{2}
7.
figure 1
figure 2

$$
\mathrm{SF}
$$

8. figure 1
figure 2

SF \qquad ; $x=$ \qquad $; y=$ \qquad P_{1} \qquad

Using Proportions to Find Heights

Look at the figures below. They are from number 8 in the previous practice.
figure 1

8
figure 2

Here is what we know about figure 1 and figure 2 above.

- Their scale factor is $\frac{1}{1}$. This makes all the pairs of corresponding sides the same length.
- We already knew that their corresponding angles were the same measure because we knew that they were similar. This makes the triangles identical to each other.

Geometric figures that are exactly the same shape and exactly the same size are congruent to each other. The symbol for congruence, \cong, is a lot like the symbol for similar, but the equal sign, $=$, underneath it tells us that two things are exactly the same size.

We can use proportions to find the lengths of some items that would be difficult to measure. For instance, if we needed to know the height of a flagpole without having to inch our way up, we could use proportions. See the example on the following page.

A 6-foot man casts a 4-foot shadow at the same time a flagpole casts a 26foot shadow. Find the height (\boldsymbol{h}) of the flagpole.

To solve a problem like this, set up a proportion comparing corresponding parts.

$$
\frac{\text { man's height }}{\text { man's shadow }}=\frac{\text { flagpole's height }}{\text { flagpole's shadow }} \quad \begin{aligned}
\frac{6}{4} & =\frac{x}{26} \\
4 x & =6 \times 26 \\
4 x & =156 \\
\frac{4 x}{4} & =\frac{156}{4} \\
x & =39 \text { feet }
\end{aligned}
$$

Now try the following practice.

Use proportions to solve the following. Refer to the previous pages as needed. Round to the nearest tenth. Show all your work.

1. A tree casts a 50 -foot shadow at the same time a 4 -foot fence post casts a 3-foot shadow. How tall is the tree?

Answer: \qquad feet
2. If the scale factor for a miniature toy car and a real car is 1 to 32 and the windshield on the toy car is 2 inches long, how long is the windshield on the real car?

Answer: \qquad inches

3. The goal post on the football field casts an 18 -foot shadow. The 4 -foot water cooler casts a 5 -foot shadow. How tall is the goal post?

Answer: \qquad feet
4. A yardstick casts a 24 -inch shadow at the same time a basketball goal casts a 72 -inch shadow. How tall is the basketball goal?

Answer: \qquad inches

5. A photo that is 4 inches by 6 inches needs to be enlarged so that the shorter sides are 6 inches. What will be the length of the enlargement?

Answer: \qquad inches
Practice
Use the list below to complete the following statements.

congruent (\cong) equiangular equilateral	perimeter (P) proportion ratio	regular polygon scale factor

1. A figure with all angles congruent is called
\qquad _.
2. The comparison of two quantities is a \qquad -
3. Figures or objects that are exactly the same shape and size are said to be \qquad .
4. The \qquad is the distance around a figure.
5. A figure with all sides congruent is called
\qquad
6. $A(n)$ \qquad is a mathematical sentence stating that two ratios are equal.
7. The constant that is multiplied by the lengths of each side of a figure that produces an image that is the same shape as the original figure is the \qquad -.
8. A polygon that is both equilateral and equiangular is called a
\qquad -.

Unit Review

Find the value of the variable in the following. Check your answers. Show all your work.

1. $\frac{x+2}{x}=\frac{5}{3}$
2. $\frac{4}{3 x+1}=\frac{7}{5 x-2}$
3. $\frac{3 x}{x+7}=\frac{2}{3}$
4. $\frac{9 x-1}{7}=\frac{3 x-11}{2}$

Use proportions to solve the following. Check your answers. Show all your work.
5. The ratio of two integers is $9: 7$. The smaller integer is 448 . Find the larger integer.

Answer: \qquad
6. The ratio of two integers is $6: 11$. The larger integer is 88 . Find the smaller integer.

Answer: \qquad
7. The cost of 24 pounds of rice is $\$ 35$. At the same rate, what would 5 pounds of rice cost? Round to the nearest whole cent.

Answer: \$ \qquad

Look at each pair of figures below. Determine if they are similar to each other.
Write yes if they are similar. Write no if they are not similar.
\qquad
8.

\qquad
9.

10.

ns to solve the following. Show all your work.
 Use proportions to solve the following. Show all your work.

14. A tree casts a 40 -foot shadow at the same time a 6 -foot post casts an 8 -foot shadow. How tall is the tree?

Answer: \qquad feet
15. A 3.5-foot-tall mailbox casts a shadow of 5 feet at the same time a light pole casts a 20 -foot shadow. How tall is the light pole?

Answer: \qquad feet

Unit 7: Exploring Relationships with Venn Diagrams

This unit introduces the concept of set theory and operations involving sets. It will also explore the relationship between sets and Venn diagrams, in addition to using set theory to solve problems.

Unit Focus

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 7: Quadratic Equations

- MA.912.A.7.1

Graph quadratic equations with and without graphing technology.

- MA.912.A.7.2

Solve quadratic equations over the real numbers by factoring, and by using the quadratic formula.

- MA.912.A.7.8

Use quadratic equations to solve real-world problems.

- MA.912.A.7.10

Use graphing technology to find approximate solutions of quadratic equations.

Discrete Mathematics Body of Knowledge

Standard 7: Set Theory

- MA.912.D.7.1

Perform set operations such as union and intersection, complement, and cross product.

- MA.912.D.7.2

Use Venn diagrams to explore relationships and patterns, and to make arguments about relationships between sets.

Vocabulary

Use the vocabulary words and definitions below as a reference for this unit.
braces \{ \} \qquad grouping symbols used to express sets

Cartesian cross product.....a set of ordered pairs found by taking the x-coordinate from one set and the y-coordinate from the second set
complement \qquad the set of elements left over when the elements of one set are deleted from another
coordinate grid or plane ... a two-dimensional network of horizontal and vertical lines that are parallel and evenly spaced; especially designed for locating points, displaying data, or drawing maps
counting numbers
(natural numbers) \qquad the numbers in the set $\{1,2,3,4,5, \ldots\}$
element or member \qquad one of the objects in a set
empty set or null set (ø) ...a set with no elements or members
even integer. \qquad any integer divisible by 2 ; any integer with the digit $0,2,4,6$, or 8 in the units place; any integer in the set $\{\ldots,-4,-2,0,2,4, \ldots\}$
expression \qquad a mathematical phrase or part of a number sentence that combines numbers, operation signs, and sometimes variables
Examples: $4 r^{2} ; 3 x+2 y ; \sqrt{25}$
An expression does not contain equal ($=$) or inequality ($<,>, \leq, \geq$, or \neq) signs.

point

\qquad
a specific location in space that has no
discernable length or width
positive integers integers greater than zero relation

\qquad
a set of ordered pairs (x, y)
roster

\qquad
a list of all the elements in a set
rule

\qquad
a description of the elements in a set
set ...a collection of distinct objects or numbers
union (\checkmark)

\qquad
combination of the elements in two or more
sets
Venn diagram \qquad overlapping circles used to illustrate relationships among sets
x-coordinate \qquad the first number of an ordered pair y-coordinate \qquad the second number of an ordered pair

Unit 7: Exploring Relationships with Venn Diagrams

Introduction

We will become more familiar with Venn diagrams as a mathematical tool while learning to use operations relative to set theory.

Lesson One Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Discrete Mathematics Body of Knowledge
Standard 7: Set Theory

- MA.912.D.7.1

Perform set operations such as union and intersection, complement, and cross product.

Sets

Unit 1 discussed sets. A set is a collection of distinct objects or numbers. Each item in the set is called an element or member of the set. Sets are indicated by grouping symbols called braces $\}$.

A set can have a few elements, lots of elements, or no elements-called a null set (\varnothing) or empty set. Sets like the counting numbers, also called the natural numbers - $\{1,2,3,4,5, \ldots\}$-are infinite sets because they continue in the pattern and never end. Patterns are predictable. They have a prescribed sequence of numbers or objects.

Other sets with a specified number of elements are called finite sets. Some finite sets are very large; however, even very large sets with bounds and limits are finite sets.

Sets can usually be written in two different ways. One way is by roster. A roster is a list. You have probably heard of a football roster-a list of players on the team-or a class roster-a list of students in the class. Look at this set expressed in roster format.
\{red, orange, yellow, blue, green, indigo, violet\}
We could also name this set using the rule format. That means describing the set.
\{the colors in the rainbow\}
This is another way to indicate the set of colors listed above. So you see, there are two ways to express the same set.

Let's look at some more examples.
$\{$ the set of vowels in the alphabet $\}$ means $\{a, e, i, o, u\}$
$\{2,4,6,8, \ldots\}$ is the same as $\{$ the set of positive even integers $\}$
(Ul) Remember: Integers are the numbers in the set $\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$ and positive integers are integers greater than zero.

1. The set of counting numbers is \qquad because it has no boundaries.
2. A set with no elements is called a(n) \qquad set.
3. Each item in the set is called a(n) \qquad of the set.
4. The grouping symbols used to indicate sets are called
\qquad .
5. A set whose elements are described is in \qquad format.
6. A set with a specified number of elements, and a whole number can be used to represent its number of elements, is a
\qquad set.
7. A list of all the elements in a set, like the list of students in one class, is in \qquad format.
8. A \qquad is predictable, or it has a prescribed sequence of numbers or objects.

Practice

Express the following as sets in roster format.

1. integers greater than 3 and less than 11
2. counting numbers less than 6
\qquad
3. colors in the American flag
\qquad
4. planets in the solar system
\qquad
5. courses on your schedule
\qquad

Express the following as sets in rule format.
6. breakfast, lunch, dinner
7. Chevrolet, Ford, Chrysler, Buick
\qquad
8. fork, spoon, knife, plate, glass
9. shoulder, wrist, elbow, hand, finger
10. table of contents, chapter, glossary, index, page

Lesson Two Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Discrete Mathematics Body of Knowledge

Standard 7: Set Theory

- MA.912.D.7.1

Perform set operations such as union and intersection, complement, and cross product.

- MA.912.D.7.2

Use Venn diagrams to explore relationships and patterns, and to make arguments about relationships between sets.

When you combine all the elements in one set with all the elements in another set, we call this the union (\checkmark). A union is like a "marriage" of elements in a set. The symbol for union looks a bit like the letter "u."

A problem involving a union looks like the following.

$$
\{2,3,4,5\} \cup\{2,4,6,8\}
$$

This means that you should combine everything in the first set with all new elements from the second set.

$$
\{2,3,4,5\} \cup\{2,4,6,8\}=\{2,3,4,5,6,8\}
$$

Look at other examples.

Example 1

$\{6,7,8,10\} \cup\{5,7,8,9\}=\{5,6,7,8,9,10\}$
Note: You do not repeat any element even though it may have been in both sets.

Example 2

$\{\ldots,-3,-2,-1,0\} \cup\{0,1,2,3, \ldots\}=\{$ the integers $\}$
This result can be expressed in rule format.

Example 3

$$
\{5,7,9,11\} \cup\}=\{5,7,9,11\}
$$

The empty set had nothing to add, so the answer is the same as the first set.

The intersection of two streets is the place where the streets cross each other. The intersection of two lines is also the point where they cross, or the point(s) they have in common. Likewise, when we take the intersection of two sets, we take only those elements that the two sets have in common. The symbol for intersection (\curvearrowright) looks like an upside-down union symbol.

An intersection problem would look like the following.

$$
\{2,3,4,5\} \cap\{2,4,6,8\}
$$

This means that you should include only those elements that the sets have in common.

$$
\{2,3,4,5\} \cap\{2,4,6,8\}=\{2,4\}
$$

Look at these examples.

Example 1

$\{6,7,8,10\} \cap\{5,7,8,9\}=\{7,8\}$
Note: The only elements that appears in both sets are 7 and 8 .

Example 2

$$
\{\ldots,-3,-2,-1,0\} \cap\{0,1,2,3, \ldots\}=\{0\}
$$

The only element the sets have in common is 0 .

Example 3

$\{5,7,9,11\} \cap\}=\{ \}$
Since the empty set has no elements, it cannot have any elements in common with another set.

We can also use Venn diagrams to illustrate the union and intersection of sets. Unit 1 had a Venn diagram showing the relationships between sets of numbers.

Example 1

Look at the examples below. The sets illustrated are using Venn diagrams.
Set $A=\{6,7,8,10\}$ and set $B=\{5,7,8,9\}$

The union of A and $B(A \cup B)$ is both circles. Notice that there are numbers outside of set A and set B. Those are not part of the union or intersection.

The intersection of A and $B(A \cap B)$ is only the football shape in the middle where the numbers that A and B have in common are located.

Look at these examples as well.

Example 2

$$
\begin{aligned}
& A=\{\ldots,-3,-2,-1,0\}, B=\{0,1,2,3, \ldots\} \\
& A \cup B=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
& A \cap B=\{0\}
\end{aligned}
$$

Example 3

$$
\begin{aligned}
& A=\{5,7,9,11\}, B=\{ \} \\
& A \cup B=\{5,7,9,11\} \\
& A \cap B=\{ \}
\end{aligned}
$$

Your turn to try some.

Practice

```
Answer the following.
1. What is the union of \(\{6,7,13\}\) and \(\{5,6,15\}\) ?
```

\qquad
2. What is the union of $\{6,7,10\}$ and $\{2\}$?
\qquad
3. What is the union of $\{5,7,9\}$ and $\{3,7,9\}$?
\qquad
4. $\{2,3,4\} \cup\{1,3,5,7\}$
\qquad
5. $\{2,4,6,8\} \cup\{1,3,5,7\}$
\qquad
6. $\} \cup\{5,12,15\}$
7. $\{1,2,3,4\} \cup\}$
\qquad
8. $\{1,2,3, \ldots, 10\} \cup\{2,4,6,8,10\}$
\qquad
9. What is the intersection of $\{2,8\}$ and $\{1,3,9,13\}$?
\qquad
10. What is the intersection of $\{6,7,13$,$\} and \{5,6,15\}$?
\qquad
11. What is the intersection of $\{3,5,9\}$ and $\{3,6,9\}$?
\qquad
12. $\{2,3,4\} \cap\{1,3,5,7\}$
\qquad
13. $\{2,4,6,8\} \cap\{1,3,5,7\}$
\qquad
14. $\} \cap\{5,12,15\}$
\qquad
15. $\{1,2,3,4\} \cap\}$
\qquad
16. $\{1,2,3, \ldots, 10\} \cap\{2,4,6,8,10\}$

Use the Venn diagrams below to illustrate the following sets.

1. $A=\{1,2,3,4,5,6\}$ $B=\{4,5,6,7,8\}$
a. $A \cup B$

b. $A \cap B$

2. $A=\{1,2,3,4,5,6,7,8\}$
$B=\{2,4,6,8,10\}$
a. $A \cup B$

b. $A \cap B$

3. $A=\{3,6,9,12,15\}$
$B=\{2,4,6,8,10,12\}$
a. $A \cup B$

b. $A \cap B$

Lesson Three Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Discrete Mathematics Body of Knowledge

Standard 7: Set Theory

- MA.912.D.7.1

Perform set operations such as union and intersection, complement, and cross product.

- MA.912.D.7.2

Use Venn diagrams to explore relationships and patterns, and to make arguments about relationships between sets.

Complements

Look at set A $\{1,2,3,4,5,6,7,8,9\}$ and set $B\{2,4,6,8\}$. Do you see that all of the elements from set B can be found in set A ? If we delete set B from set A we are left with the elements 1, 3, 5, 7, 9 .

We could place these in a set and call it by another name, perhaps set C. We call set C the complement of set B with respect to set A. In other words, when we delete the elements of set B from set A we end up with set C.

Let's look at another example.
With respect to set R \{red, orange, yellow, green, blue, indigo, violet\}, find the complement of set S \{red, yellow, blue\}. We would delete red, yellow, and blue from set R and end up with a new set T \{orange, green, indigo, violet $\}$.

In symbols, this example looks like the following.

$$
\mathrm{R}-\mathrm{S}=\mathrm{T}
$$

The symbol for complement looks like a minus sign (-).

Answer the following.

1. With respect to $\mathrm{A}\{1,3,6,9,12,15,18\}$ find the complement of B $\{3,12,15\}$.
\qquad
2. With respect to $\mathrm{A}\{1,3,6,9,12,15,18\}$ find the complement of C $\{6,12,18\}$.
\qquad
3. $\{2,4,6,7,8\}-\{2,6,8\}$
\qquad
4. $\{2,4,6,8,9,13,14,16\}-\{6,9,14\}$
\qquad
5. $\{$ integers $\}$ - odd integers $\}$
\qquad
6. $\{$ letters of the alphabet $\}$ - $\{$ vowels $\}$
7. Find the complement of \{animals with four feet\} with respect to \{dogs, cats, fish, birds, mice, rabbits\}.
\qquad
8. $\{6,7,8,9,10,11,12,13,14,15,16,17,18,19\}-\{$ multiples of 3$\}$
\qquad
9. \{integers $\}$ - \{positive numbers $\}$
10. $\{2,4,6,8,10\}-\{2,4,6,8,10\}$
11. $\{2,4,6,8,10\}-\{ \}$
12. \{students in your class $\}$ - \{male students in your class $\}$

Complements in Venn Diagrams

When talking about complements in Venn diagrams, we use a slightly different notation.

The figure below represents the complement of B.

We use the symbol \bar{B} to indicate that we are deleting all the elements of set B from the diagram and shading everything except what is in set B.

Practice

Use the Venn diagrams below to give each set in roster format.
(c) Remember: Roster format is a list of all the elements in a set.

Note: Elements listed outside the circles but inside the rectangles are part of the sets.

1. $\overline{\mathrm{A}}$
2. $\overline{\mathrm{B}}$
3. $\overline{\mathrm{C}}$
\qquad
4. $\overline{\mathrm{D}}$
\qquad

Lesson Four Purpose

Reading Process Strand
Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Discrete Mathematics Body of Knowledge

Standard 7: Set Theory

- MA.912.D.7.1

Perform set operations such as union and intersection, complement, and cross product.

Cartesian Cross Products

Another operation we can do with sets involves Cartesian cross products. A Cartesian cross product is a set of ordered pairs found by taking the x-coordinate from one set and the y-coordinate from the second set. The Cartesian coordinate system is named after the mathematician René Descartes (1596-1650). We use his work every time we graph on a coordinate grid or plane. Keeping that in mind, you will find it no surprise that Cartesian cross products have something to do with graphing.

To find a Cartesian cross product we must have two sets.

$$
\text { Let's let } A=\{2,3,4\} \text { and } B=\{5,8\} .
$$

The expression in symbols looks like A X B. The X almost looks like a large multiplication sign. However, don't be fooled. We are not going to multiply. We are going to create a relation, which is another name for a set of ordered pairs.

So, $\mathrm{AXB}=\{(2,5),(2,8),(3,5),(3,8),(4,5),(4,8)\}$
Notice that in the newly created set, every element is an ordered pair (x, y). Also see that each number in the x position came from set A and each number in the y position came from set B.

Let's look at another one.

$$
\{3,5\} \times\{1,2,3\}=\{(3,1),(3,2),(3,3),(5,1),(5,2),(5,3)\}
$$

Notice that the resulting set is a relation because every element is an ordered pair.

It's time for you to try.

Answer the following.

1. $\{1,2\} \times\{4,6\}$
\qquad
2. $\{3,4,7,8\} \times\{2,5\}$
\qquad
3. $\{1,5,9\} \times\{3,6,9\}$
4. $\{2,4\} \times\{1,3\}$
5. $\{2,4\} \times\{2,4\}$
\qquad
6. $\{6,8\} \times\{4,5,7\}$

Practice

Use the list below to complete the following statements.

braces element or member finite	intersection (\cap) null (ø) or empty set relation	roster rule	set union ($\backsim)$

1. The combining of the elements in two or more sets is called the
\qquad of the sets.
2. A set of ordered pairs is called a \qquad .
3. A \qquad is a list of the elements in a set.
4. The set of elements that two or more sets have in common is called the \qquad of the sets.
5. A \qquad is a collection of distinct objects or numbers.
6. A description of the elements in a set is called a
\qquad .
7. The symbols used to express a set are called
\qquad .
8. A set with no elements is called $a(n)$ \qquad .
9. An item in a set is called a(n) \qquad $-$
10. A set with a specified number of elements is called a
\qquad set.

Lesson Five Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Discrete Mathematics Body of Knowledge

Standard 7: Set Theory

- MA.912.D.7.1

Perform set operations such as union and intersection, complement, and cross product.

- MA.912.D.7.2

Use Venn diagrams to explore relationships and patterns, and to make arguments about relationships between sets.

Using Venn Diagrams for Three Categories

We can use Venn diagrams to solve problems that might otherwise seem impossible. Here is an example.

A group of Leon High School seniors answered a questionnaire about their plans for the weekend. In the group, 20 planned to work, 19 planned to see a movie, while 28 were planning to go out to dinner. Exactly 7 seniors planned to do all three. Another 12 seniors were planning to do dinner only. There are 2 seniors who were going to work and go to a movie but not go out to dinner, and 15 seniors were going to work and go out to dinner.

Next, we will use Venn diagrams to answer the following.

1. How many seniors answered the questionnaire?
2. How many seniors were going to dinner and a movie, but not work?
3. How many seniors were going to dinner or a movie?
4. How many seniors were only planning to work?

The first thing we will do is set up a Venn diagram for the three categories of plans. Notice that the three circles overlap.

Then we read back through the statements to fill in the different sections of the diagram. Try to find the middle information first and then work your way to the outside.

Pay careful attention to the wording. When the word "and" is used that indicates the intersection of two sets. The word "or" means union.

Exactly 7 seniors planned to do all three activities. The 7 goes in the middle.

There are 2 seniors who were going to work and to a movie, but not dinner.

There are 15 who were going to work and going out to dinner. And means intersection, which means the football shape where work and dinner overlap.

Since that football shape already contains 7 , we subtract $15-7=8$ to fill in the rest of the football shape.

There are 12 who were planning to do dinner only. That means they are in the dinner circle but not in any of the overlapping parts.

Now go back to the broader clues.

There are 20 who planned to work. This means the entire work circle must contain 20 people.

There are already $7+8+2$ in the work circle.

So $20-(7+8+2)=20-17=3$. There are 3 who are only going to work.

There are 19 who planned to see a movie, but there are two spaces for the rest of the students. So let's look at those who were going to dinner. There are 28 dinner folks. Our diagram shows $12+8+7$ already in the dinner circle.

So the empty space in the dinner circle will be $28-(12+8+7)=\mathbf{1}$.

Now we can go back to the moviegoers. There are 19 who planned to see a movie.

So $19-(2+7+1)=9$.

Now we have everything filled in and can answer the questions.

1. How many seniors answered the questionnaire?

Count each number in the diagram only once and add them together.

$$
3+2+9+8+7+1+12=42
$$

2. How many seniors were going to dinner and a movie, but not work?

Dinner and movie $=7+1=8$
(in football shape)

Delete those in the work part of the football shape

$$
8-7=\mathbf{1}
$$

3. How many seniors were going to dinner or a movie?

Dinner or a movie
I(I) \longrightarrow Remember: This means union. Be careful not to count anyone twice!

$$
2+9+8+7+1+12=39
$$

4. How many seniors were only planning to work?

There were 3 students who were in the work circle without overlapping into the other circles.

So 3 students planned to work only.

Practice
Use the Venn diagram below to answer the following.

Jen and Berry's Ice Cream store had 110 customers yesterday. There were 62 customers who bought chocolate ice cream, 38 who chose vanilla, and 41 who chose strawberry ice cream. Another 13 chose chocolate and strawberry. Then 20 chose strawberry only, 16 chose chocolate and vanilla, and 7 chose all three.

1. How many bought no ice cream?
\qquad
2. How many chose vanilla only?
\qquad
3. How many chose chocolate or vanilla or both?
\qquad
4. How many chose strawberry or vanilla or both, but not chocolate?
\qquad

Practice

Use the Venn diagram below to answer the following.

Svetlana owns a day spa. At the end of the day, the tabulation indicated that clients visited for the following reasons: Haircuts, 62; pedicures, 28; manicures, 41; all three, 5; haircut and pedicure, 13; manicure and haircut only, 6; manicure only, 25.

Note: Assume everyone who visited the spa had one of the procedures.

1. How many had manicures and pedicures?
\qquad
2. How many had manicures or pedicures or both?
3. How many had haircuts and manicures?
4. How many had haircuts and pedicures but not manicures?
5. How many had only a pedicure?
\qquad
6. How many clients visited the salon on this day?

Unit Review

Answer the following.

1. Express the set of integers greater than 5 and less than 12 in roster format.
\qquad
2. Express the set containing eyes, eyebrows, nose, mouth, and chin in rule format.
3. $\{6,8,10\} \cup\{10,12,14\}$
\qquad
4. $\{6,8,10\} \cap\{10,12,14\}$
\qquad
5. $\{1,3,6\} \cup\{1,2,3,4\}$
\qquad
6. $\{1,3,6\} \cap\{1,2,3,4\}$
\qquad
7. $\{5,7,8\} \cup\}$
\qquad
8. $\{5,7,8\} \cap\}$
\qquad
9. $\{1,2,3,4\} \cup\{5,6,7,8\}$
10. $\{1,2,3,4\} \cap\{5,6,7,8\}$

Use the Venn diagrams below to illustrate the following sets.

$$
A=\{2,4,6,9,12\} \quad B=\{2,4,5,6,7,8,10\}
$$

11. $A \cup B$

12. $\mathrm{A} \cap \mathrm{B}$

Answer the following.
13. With respect to $\mathrm{A}\{5,10,15,20,25,30\}$ find the complement of B $\{10,20,30\}$
14. $\{2,4,6,8,10\}-\{2,4\}$
15. $\{1,2,3,4,5\}-\{ \}$
\qquad
16. $\{1,2,3,4\}-\{1,2,3,4\}$
17. Use the Venn diagram below to give a set in roster format for $\overline{\mathrm{A}}$.

\qquad

Use the Venn diagram below to answer the following.

Of 74 boys in a school, the numbers out for a sport or sports were as follows: football, 48; basketball, 20; soccer, 30 ; football and soccer, 10 ; basketball and football, 11; soccer and basketball, 8 ; all three, 3 .

21. How many were not out for any sport?
\qquad
22. How many were out for football but not soccer?
\qquad
23. How many were out for soccer and basketball but not football?
24. How many play basketball only?
\qquad
25. How many play football or soccer?

Unit 8: Is There a Point to This?

This unit uses algebraic concepts along with the rules related to radical expressions to explore the coordinate plane.

Unit Focus

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 1: Real and Complex Number Systems

- MA.912.A.1.8

Use the zero product property of real numbers in a variety of contexts to identify solutions to equations.

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.7

Rewrite equations of a line into slope-intercept form and standard form.

- MA.912.A.3.8

Graph a line given any of the following information: a table of values, the x - and y-intercepts, two points, the slope and a point, the equation of the line in slope-intercept form, standard form, or point-slope form.

- MA.912.A.3.9

Determine the slope, x-intercept, and y-intercept of a line given its graph, its equation, or two points on the line.

- MA.912.A.3.10

Write an equation of a line given any of the following information: two points on the line, its slope and one point on the line, or its graph. Also, find an equation of a new line parallel to a given line, or perpendicular to a given line, through a given point on the new line.

Standard 5: Rational Expressions and Equations

- MA.912.A.5.1

Simplify algebraic ratios.

Standard 6: Radical Expressions and Equations

- MA.912.A.6.1

Simplify radical expressions.

- MA.912.A.6.2

Add, subtract, multiply and divide radical expressions (square roots and higher).

Geometry Body of Knowledge

Standard 1: Points, Lines, Angles, and Planes

- MA.912.G.1.4

Use coordinate geometry to find slopes, parallel lines, perpendicular lines, and equations of lines.

Vocabulary

Use the vocabulary words and definitions below as a reference for this unit.
absolute value
a number's distance from zero (0) on a number line; distance expressed as a positive value Example: The absolute value of both 4, written $|4|$, and negative 4 , written $|-4|$, equals 4 .

common denominator a common multiple of two or more denominators
Example: A common denominator for $\frac{1}{4}$ and $\frac{5}{6}$ is 12.
constant \qquad a quantity that always stays the same
coordinate grid or plane ... a two-dimensional network of horizontal and vertical lines that are parallel and evenly spaced; especially designed for locating points, displaying data, or drawing maps
coordinate plane \qquad the plane containing the x - and y-axes
coordinates \qquad numbers that correspond to points on a coordinate plane in the form (x, y), or a number that corresponds to a point on a number line
degree $\left({ }^{\circ}\right)$ \qquad common unit used in measuring angles
denominatorthe bottom number of a fraction, indicating the
number of equal parts a whole was divided
into

Example: In the fraction $\frac{2}{3}$ the denominator is

3, meaning the whole was divided into 3 equal
parts.

line segment (—) \qquad a portion of a line that consists of two defined endpoints and all the points in between Example: The line segment $A B$ is between point A and point B and includes point A and point B.

midpoint
(of a line segment) \qquad the point on a line segment equidistant from the endpoints
negative integers \qquad integers less than zero
negative numbers \qquad numbers less than zero
number line \qquad a line on which ordered numbers can be written or visualized

numerator \qquad the top number of a fraction, indicating the number of equal parts being considered Example: In the fraction $\frac{2}{3}$, the numerator is 2 .
ordered pair \qquad the location of a single point on a rectangular coordinate system where the first and second values represent the position relative to the x-axis and y-axis, respectively Examples: (x, y) or $(3,-4)$
parallel (||) \qquad being an equal distance at every point so as to never intersect
parallel lines \qquad two lines in the same plane that are a constant distance apart; lines with equal slopes

perpendicular (\perp) \qquad two lines, two line segments, or two planes that intersect to form a right angle
perpendicular lines \qquad two lines that intersect to form right angles

point \qquad a specific location in space that has no discernable length or width
positive numbers \qquad numbers greater than zero
product \qquad the result of multiplying numbers together Example: In $6 \times 8=48$, the product is 48 .

Pythagorean theorem \qquad the square of the hypotenuse (c) of a right triangle is equal to the sum of the square of the legs
 (a and b), as shown in the equation $c^{2}=a^{2}+b^{2}$
radical \qquad an expression that has a root (square root, cube root, etc.)
Example: $\sqrt{25}$ is a radical
Any root can be specified by an index number,
b, in the form $\sqrt[b]{a}$ (e.g., $\sqrt[3]{8}$).
root to be taken (index)
$\underset{\substack{\text { radical } \\ \text { sign }}}{\rightarrow \sqrt[3]{8}=2 \leftarrow \text { root }} \begin{gathered}\text { radicand } \\ \text { radical }\end{gathered}$
A radical without an index number is understood to be a square root.
radical expression \qquad a numerical expression containing a radical sign
Examples: $\sqrt{25}$
$2 \sqrt{25}$

side \qquad the edge of a polygon, the face of a polyhedron, or one of the rays that make up an angle
Example: A triangle has three sides.

simplest radical form \qquad an expression under the radical sign that contains no perfect squares greater than 1, contains no fractions, and is not in the denominator of a fraction
Example: $\sqrt{27}=\sqrt{9 \cdot 3}=\sqrt{9} \cdot \sqrt{3}=3 \sqrt{3}$
simplify a fraction \qquad write fraction in lowest terms or simplest form
slope \qquad the ratio of change in the vertical axis (y-axis) to each unit change in the horizontal axis (x-axis) in the form $\frac{\text { rise }}{\text { run }}$ or $\frac{\Delta y}{\Delta x}$; the constant, m, in the linear equation for the slope-intercept form $y=m x+b$
slope-intercept forma form of a linear equation, $y=m x+b$, where m is the slope of the line and b is the y-intercept
square (of a number)the result when a number is multiplied by itself or used as a factor twice Example: 25 is the square of 5 .
square root \qquad a positive real number that can be multiplied by itself to produce a given number Example: The square root of 144 is 12 or $\sqrt{144}=12$.
standard form

(of a linear equation)ax | and $a>0$ |
| :--- |
| and |

sumthe result of adding numbers together
Example: In $6+8=14$, the sum is 14.

Unit 8: Is There a Point to This?

Introduction

We will explore the relationships that exist between points, segments, and lines on a coordinate plane. Utilizing the formulas for finding distance, midpoint, slope, and equations of lines, we can identify the ways in which points and lines are related to each other.

Lesson One Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 6: Radical Expressions and Equations

- MA.912.A.6.1 Simplify radical expressions.
- MA.912.A.6.2

Add, subtract, multiply and divide radical expressions (square roots and higher).

Geometry Body of Knowledge

Standard 1: Points, Lines, Angles, and Planes

- MA.912.G.1.4

Use coordinate geometry to find slopes, parallel lines, perpendicular lines, and equations of lines.

Distance

Look at the following coordinate grids or planes. The horizontal number line on a rectangular coordinate system is the x-axis. The vertical line on a coordinate system is the y-axis. We can easily find the distance between the given graphs of the points below. The graph of a point is the point assigned to an ordered pair on a coordinate plane.

Graph of Points A and B

Because the points on the graph above are on the same horizontal (\hookleftarrow) line, we can count the spaces from one point to the other. So, the distance from A to B is 6 .

Graph of Points C and D

Because the points on the graph above are on the same vertical (\ddagger) line, we can count the spaces from one point to the other. So, the distance from C to D is 9 .

C(I) Remember: Distance is always a positive number. Even when you back your car down the driveway, you have covered a positive distance. If you get a negative number, simply take the absolute value of the number.

In many instances, the points we need to identify to find the distance between are not on the same horizontal or vertical line. Because we would have to count points on a diagonal, we would not get an accurate measure of the distance between those points. We will examine two methods to determine the distance between any two points.

Look at the graph below. We want to find the distance between point $E(2,-5)$ and $F(-4,3)$.

Graph of Points E and F

Notice that the distance between E and F looks like the hypotenuse of a right triangle.

Graph of Points E and F

Let's sketch the rest of the triangle and see what happens.

Graph of Points E and F

By completing the sketch of the triangle, we see that the result is a right triangle with one horizontal side and one vertical side. We can count to find the lengths (l) of these two sides, and then use the Pythagorean theorem to find the distance from E to F.

Remember: The Pythagorean theorem is the square of the hypotenuse (c) of a right triangle and is equal to the sum of the squares of the legs (a and b), as shown in the equation $a^{2}+b^{2}=c^{2}$.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
6^{2}+8^{2} & =c^{2} \\
36+64 & =c^{2} \\
100 & =c^{2} \\
\sqrt{100} & =c \\
10 & =c
\end{aligned}
$$

- The opposite of squaring a number is called finding the square root. For example, the square root of 100 , or $\sqrt{100}$, is 10.
- The square root of a number is shown by the symbol $\sqrt{ }$, which is called a radical sign or square root sign.
- The number underneath is called a \quad radical $\rightarrow \sqrt{100} \leftarrow$ radicand radicand.
- The radical is an expression that has a root. A root is an equal factor of a number.
- $\sqrt{100}$ is a radical expression. It is a numerical expression containing a radical sign.

Practice

For the following:

- plot the two points
- draw the hypotenuse
- complete the triangle
- use the Pythagorean theorem to find the distance between the given points
- show all your work
- leave answers in simplest radical form.

1. $(3,4),(-2,6)$

2. $(3,-3),(6,4)$

3. $(-5,0),(2,3)$

4. $(0,2),(-5,7)$

5. $(2,2),(-1,-2)$

6. $(0,0),(-4,4)$

7. $(3,5),(-2,-7)$

8. $(6,-7),(-2,8)$

Practice

Use the list below to write the correct term for each definition on the line provided.

absolute value coordinate grid or plane distance graph (of a point)	horizontal negative numbers positive numbers	vertical x-axis y-axis

\qquad 1. parallel to or in the same plane of the horizon
2. the length of a segment connecting two points
3. at right angles to the horizon; straight up and down
4. numbers less than zero
5. a number's distance from zero (0) on a number line
6. numbers greater than zero
\qquad 7. the vertical number line on a rectangular coordinate system
\qquad 8. the point assigned to an ordered pair on a coordinate plane
9. the horizontal number line on a rectangular coordinate system
10. a two-dimensional network of horizontal and vertical lines that are parallel and evenly spaced

Using the Distance Formula

Sometimes, it is inconvenient to graph when finding the distance. So, another method we often use to find the distance between two points is the distance formula.

The distance formula is as follows.

> distance formula
> $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

The little 1 s and 2 s that are subscripts to the x^{\prime} s and y^{\prime} s signify that they come from different ordered pairs.

Example

$\left(x_{1}, y_{1}\right)$ is one ordered pair and $\left(x_{2}, y_{2}\right)$ is another ordered pair.
Note: Be consistent when putting the values into the formulas.
Let's look at the same example of $G(2,-5)$ and $H(-4,3)$, and use the distance formula. See the graph on the following page.

Graph of Points \boldsymbol{G} and \boldsymbol{H}

$x_{1}=2$
$y_{1}=-5$
$x_{2}=-4$
$y_{2}=3$

$$
\begin{aligned}
& \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& \sqrt{(-4-2)^{2}+(3--5)^{2}}= \\
& \sqrt{(-6)^{2}+(8)^{2}}= \\
& \sqrt{36+64}= \\
& \sqrt{100}=
\end{aligned}
$$

$$
10
$$

Compare the numbers in the distance formula to the numbers used in the Pythagorean theorem.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
6^{2}+8^{2} & =c^{2} \\
36+64 & =c^{2} \\
100 & =c^{2} \\
\sqrt{100} & =c \\
10 & =c
\end{aligned}
$$

You should always get the same answer using either method.

Practice

Use the distance formula to solve the following. Show all your work. Leave answers in simplest radical form.

$$
\begin{gathered}
\text { distance formula } \\
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{gathered}
$$

1. $(3,4),(-2,6)$
2. $(3,-3),(6,4)$
3. $(-5,0),(2,3)$
4. $(4,-3),(-3,4)$
5. $(0,2),(-5,7)$
6. $(2,2),(-1,-2)$
7. $(0,0),(-4,4)$
8. $(3,5),(-2,-7)$
9. $(6,-7),(-2,8)$
10. $(-4,6),(5,-6)$

Check yourself: Compare your answers to the practice on pages 517-526. Do they match? If not, rework until both sets of practice answers match.

Practice

Use your favorite of the two methods shown on pages 529-531. One method uses the distance formula and the other method uses the Pythagorean theorem. Find the distance between each pair of points below using either method. Refer to the examples on pages 529-531 as needed.

Show all your work. Leave answers in simplest radical form.

distance formula
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Pythagorean theorem

$$
a^{2}+b^{2}=c^{2}
$$

1. $(0,0),(-3,4)$
2. $(5,-6),(6,-5)$
3. $(-5,-8),(3,7)$

Lesson Two Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 5: Rational Expressions and Equations

- MA.912.A.5.1

Simplify algebraic ratios.

Midpoint

Sometimes it is necessary to find the point that is exactly in the middle of two given endpoints. We call this the midpoint (of a line segment). What we are actually trying to find are the coordinates of that point, which is like the address of the point, or its location on a coordinate plane or a number line.

Finding the Midpoint of a Line Segment Using a Number Line

You can find the midpoint of a line segment (-), also called a segment, in a couple of different ways. One way is to use a number line.

On a number line, you can find the midpoint of a line segment by counting in from both endpoints until you reach the middle.

midpoint

how to use a number line to find the midpoint of a line segment

Remember: If we draw a line segment from one point to another, we can call it line segment $A B$ or segment $A B$. See a representation of line segment $A B(\overline{A B})$ below. The symbol $(-)$ drawn over the two uppercase letters describes a line segment. The symbol has no arrow because the line segment has a definite beginning and end called endpoints. A and B are endpoints of the line segment $A B(\overline{A B})$.

On the other hand, the symbol (\hookleftarrow) drawn over two uppercase letters describes a line. The symbol has arrows because a line has no definite beginning or end. A and B are points on the line $A B(\overleftrightarrow{A B})$.

Method One Midpoint Formula

Another way to find the midpoint of a line segment is to use the Method One midpoint formula below. To do this, add the two endpoints together and divide by two.

$$
\begin{aligned}
& \text { Method One midpoint formula } \\
& \qquad \frac{a+b}{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{a+b}{2} & = \\
\frac{-6+10}{2} & = \\
\frac{4}{2} & =
\end{aligned}
$$

$$
2
$$

Therefore, for points A and B on the number line, the midpoint is

$$
\frac{-6+10}{2}=\frac{4}{2}=2
$$

Practice

Find the coordinate of the midpoint for each pair of points on the number line below. Use either of the methods below from pages 538-539.

- Use the number line and count in from both endpoints of a line segment until you reach the middle to determine the midpoint.
- Use the Method One midpoint formula and add the two endpoints together, then divide by two. Show all your work.

Method One midpoint formula
$\frac{a+b}{2}$

Refer to previous pages as needed.

1. A and C
2. $\quad B$ and E
3. $\quad A$ and E
4. D and G
5. A and G

Method Two Midpoint Formula
Do you think the process may change a bit when we try to find the midpoint of points S and T as seen on the graph below?

Graph of Points S and T

When the points are on a coordinate plane, or the plane containing the x - and y-axes, we have to think in two dimensions to find the coordinates of the midpoint. The midpoint will have an x-coordinate and a y-coordinate (x, y). To find the midpoint on a coordinate plane, we simply use the Method Two midpoint formula twice-once to find the x-coordinate and again to find the y-coordinate.

Let's see how this works.

We see that point S has coordinates ($2,-5$), and T is located at $(6,4)$. Use the Method Two midpoint formula to find the exact location of the midpoint of $\overline{S T}$.

$$
\begin{aligned}
& \text { midpoint of } \overline{S T}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)= \\
& \left(\frac{2+6}{2}, \frac{-5+4}{2}\right)=\begin{array}{l}
\text { find the average of the } \\
x \text {-values, then the average of } \\
\text { the } y \text {-values }
\end{array} \\
& \left(\frac{8}{2}, \frac{-1}{2}\right) \\
& \left(4, \frac{-1}{2}\right)
\end{aligned}
$$

Practice

Find the midpoint of the coordinates for each segment whose endpoints are given. Use the Method Two midpoint formula below. Show all your work. Refer to pages 542-543 as needed.

$$
\begin{aligned}
& \text { Method Two midpoint formula } \\
& \qquad\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
\end{aligned}
$$

1. $(2,8),(-4,2)$
2. $(0,0),(-3,-4)$
3. $(1,2),(4,3)$
4. $(-3,-5),(9,0)$

5. $(8,-4),(10,9)$
6. $(6,8),(-3,5)$

$\begin{aligned} & \frac{0}{0}= \\ & \text { * } \end{aligned}$		
Practice		
Match each definition with the correct term. Write the letter on the line provided.		
1. a portion of a line that consists A. coordinate plane of two defined endpoints and all points in between		
2. the plane containing the x - and y-axes		
3. write fraction in lowest terms or simplest form		
	4. the second number of an ordered pair	D. midpoint (of a line segment)
	5. the number paired with a point on the number line	E. number line
	6. numbers that correspond to points on a coordinate plane in the form (x, y), or a number that corresponds to a point on a number line	F. simplify a fraction
γ	7. the point on a line segment equidistant from the endpoints	G. x-coordinate
	8. a line on which ordered numbers can be written or visualized	H. y-coordinate

Lesson Three Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.9

Determine the slope, x-intercept, and y-intercept of a line given its graph, its equation, or two points on the line.

Geometry Body of Knowledge

Standard 1: Points, Lines, Angles, and Planes

- MA.912.G.1.4

Use coordinate geometry to find slopes, parallel lines, perpendicular lines, and equations of lines.

Slope

Slope can be thought of as the slant of a line. It is often defined as $\frac{\text { rise }}{\text { run }}$, which means the change in the y-values (rise) on the vertical axis, divided by the change in the x-values (run) on the horizontal axis. In the figure below we can count to find the slope between points $Q(-6,4)$ and $R(2,8)$.

Graph of Points Q and R

slope of a line

However, we can also use the slope formula to determine the slope of a line without having to see a graph of the two points of the line.

slope formula

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

(c) Remember: m is always used to represent slope.

However, we must know the coordinates of two points on a line so that we can use the formula. Refer to points Q and R on the previous page. The coordinates of Q are $(-6,4)$ and the coordinates of R are $(2,8)$. Let's see how this works in the slope formula.

$$
\begin{aligned}
& x_{1}=-6 \\
& x_{2}=2 \\
& y_{1}=4 \\
& y_{2}=8 \\
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8-4}{2--6}=\frac{4}{8}=\frac{1}{2}
\end{aligned}
$$

When the slope of a line is positive, the line will rise from left to right.

Examples

When the slope of a line is negative, the line will fall from left to right.

Examples

When the slope has a zero in the numerator $\left(\frac{0}{x}\right)$, the line will be horizontal and have a slope of 0 .

When the slope has a zero in the denominator $\left(\frac{y}{0}\right)$, the line will be vertical and have no slope at all. We sometimes say that the slope of a vertical line is undefined.

Practice

Use the slope formula below to find the slope of each line passing through points listed below. Simplify the answer. Then determine whether the line is rising, falling, horizontal, or vertical. Write the answer on the line provided. Show all your work.

slope formula

$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Remember:
$\frac{0}{x}=$ a line that is horizontal with a zero (0) slope
$\frac{y}{0}=$ a line that is vertical with no slope
\qquad 1. $(2,8),(-4,2)$
\qquad 2. $(0,0),(-3,-4)$
\qquad 3. $(1,2),(4,3)$
\qquad 8. $(5,-6),(-5,6)$
\qquad 9. $(6,6),(-4,-4)$
10. $(6,7),(6,-4)$
11. $(5,5),(-5,-5)$

15. $(4,5),(8,16)$

Lesson Four Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 1: Real and Complex Number Systems

- MA.912.A.1.8

Use the zero product property of real numbers in a variety of contexts to identify solutions to equations.

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.7

Rewrite equations of a line into slope-intercept form and standard form.

- MA.912.A.3.8

Graph a line given any of the following information: a table of values, the x - and y-intercepts, two points, the slope and a point, the equation of the line in slope-intercept form, standard form, or point-slope form.

- MA.912.A.3.9

Determine the slope, x-intercept, and y-intercept of a line given its graph, its equation, or two points on the line.

Geometry Body of Knowledge

Standard 1: Points, Lines, Angles, and Planes

- MA.912.G.1.4

Use coordinate geometry to find slopes, parallel lines, perpendicular lines, and equations of lines.

Equations of Lines

An equation of a line can be expressed in several ways. Mathematicians sometimes use the format $a x+b y=c$. This is called standard form (of a linear equation). In the standard form, linear equations have the following three rules.

1. a, b, and c are integers, or the numbers in the set
$\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$
2. a cannot be a negative integer
3. a and b cannot both be equal to 0

Linear Equations in Standard Form

- $a x+b y=c$
- x and y are variables
- a, b, and c are constants for the given equation

You can graph a line fairly easily by using standard form.
Follow this example.

$$
3 x+2 y=12
$$

If we replace x with 0 we get the following.

$$
\begin{aligned}
3 x+2 y & =12 \\
3(0)+2 y & =12 \\
0+2 y & =12 \\
2 y & =12 \\
y & =6
\end{aligned}
$$

This tells us that the point $(0,6)$ is on the graph of the line $3 x+2 y=12$. In fact $(0,6)$ is called the y-intercept of the line. It is the point where the line crosses the y-axis.

Remember that you must have two points to decide exactly where the line goes on the coordinate plane. So, we repeat the process, but this time replace y with 0 .

$$
\begin{aligned}
3 x+2 y & =12 \\
3 x+2(0) & =12 \\
3 x+0 & =12 \\
3 x & =12 \\
x & =4
\end{aligned}
$$

This tells us that the point $(4,0)$ is also on the line. Did you guess that this is called the x-intercept?

So, if we plot the two points $(0,6)$ and $(4,0)$, we can draw a line connecting them.

Did you notice that we could find the slope of the line above either by using the slope formula with the x - and y-intercepts ($m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0-6}{4-0}=\frac{-6}{4}=\frac{-3}{2}$) or by counting rise and run from the graph?

Let's try another example.

$$
5 x-y=15
$$

If $x=0$,

$$
\begin{aligned}
5 x-y & =15 \\
5(0)-y & =15 \\
0-y & =15 \\
-y & =15 \\
y & =-15
\end{aligned}
$$

If $y=0$,

$$
\begin{aligned}
5 x-y & =15 \\
5 x-y(0) & =15 \\
5 x-0 & =15 \\
5 x & =15 \\
x & =3
\end{aligned}
$$

$(0,-15) y$-intercept
$(3,0) x$-intercept

Graph of $5 x-y=15$

Your turn.

Practice

Use the equations in standard form to find the y-intercepts, find the x-intercepts, and graph the lines of the following.

1. $2 x+5 y=10$
a. y-intercept $=$ \qquad
b. x-intercept $=$ \qquad
c. graph

2. $8 x-3 y=24$
a. $\quad y$-intercept $=$ \qquad
b. x-intercept $=$ \qquad
c. graph

Graph of $8 x-3 y=24$

3. $3 x-8 y=24$
a. y-intercept $=$ \qquad
b. x-intercept $=$ \qquad
c. graph

Graph of $\mathbf{3 x}-\mathbf{8 y}=\mathbf{2 4}$

4. $6 x+y=18$
a. y-intercept $=$ \qquad
b. x-intercept $=$ \qquad
c. graph

Graph of $6 x+y=18$

5. $4 x=8$

Hint: If there is no y-intercept, the line is vertical. If there is no x-intercept, the line is horizontal.
a. y-intercept $=$ \qquad
b. x-intercept $=$ \qquad
c. graph

Graph of $4 x=8$

6. $4 y=8$
a. y-intercept $=$ \qquad
b. x-intercept $=$ \qquad
c. graph

Graph of $4 y=8$

Slope-Intercept Form

Many students prefer to use the slope-intercept form for the equation of a line. An equation in this form tells you the slope of a line and where it crosses the y-axis. The generic format looks like the following.

So if $y=2 x+4$, this line crosses the y-axis at 4 and has a slope of 2 .
To graph this line, plot a point at $(0,4)$ and count the rise and run of the slope $\left(\frac{2}{1}\right)$ from that point and draw a line.

For the equation of the line

$$
y=\frac{2}{3} x-7
$$

the y-intercept is -7 .

The slope is $\frac{2}{3}$, so the graph looks like the following.

C(I) 3
Remember: If the equation looks like $y=6$, the line is horizontal and has zero slope. If the equation looks like $x=6$, the line is vertical and has no slope. Look at the graphs below.

$y=6$
line is horizontal
zero slope

$x=6$
line is vertical no slope
(sometimes referred to as undefined)

Practice

Use the equations to find the y-intercepts, find the slopes, and graph the lines of the following.

1. $y=5 x+7$
a. $\quad y$-intercept $=$ \qquad
b. slope $=$ \qquad
c. graph

$$
\text { Graph of } y=5 x+7
$$

2. $y=-3 x-9$
a. y-intercept $=$ \qquad
b. slope $=$ \qquad
c. graph

3. $y=\frac{5}{7} x+11$
a. y-intercept $=$ \qquad
b. \quad slope $=$ \qquad
c. graph

4. $x=-7$
a. y-intercept $=$ \qquad
b. slope $=$ \qquad
c. graph

Graph of $\boldsymbol{x}=-7$

5. $y=\frac{2}{3} x-4$
a. y-intercept $=$ \qquad
b. slope $=$ \qquad
c. graph

6. $y=-4 x+2$
a. y-intercept $=$ \qquad
b. slope $=$ \qquad
c. graph

$$
\text { Graph of } y=-4 x+2
$$

Transforming Equations into Slope-Intercept Form

Sometimes it is necessary to transform an equation into the slope-intercept form so that we can readily identify the slope or the y-intercept or both.

Follow these examples. Remember, we want it to be in the $y=m x+b$ format.

Example 1

$$
\begin{aligned}
6 x-3 y & =12 \\
-3 y & =-6 x+12 \quad \longleftarrow \text { subtract } 6 x \text { from both sides } \\
y & =2 x-4 \quad \longleftarrow \text { divide both sides by }-3
\end{aligned}
$$

Now we can easily see that the slope is 2 and the y-intercept is -4 .
Example 2

$$
\begin{aligned}
x+\frac{2}{3} y & =8 & & \\
\frac{2}{3} y & =-x+8 & \longleftarrow & \text { subtract } x \text { from each side } \\
\left(\frac{3}{2}\right) \frac{2}{3} y & =-\left(\frac{3}{2}\right) x+\left(\frac{3}{2}\right) 8 & \longleftarrow & \text { multiply both sides by } \frac{3}{2} \\
y & =-\frac{3}{2} x+12 & \longleftarrow & \text { simplify }
\end{aligned}
$$

slope $=-\frac{3}{2} \quad y$-intercept $=12$

Practice

Express in slope-intercept form, find the \boldsymbol{y}-intercepts, find the slopes, and graph the lines of the following.

1. $5 x+3 y=-18$
a. slope-intercept form $=$ \qquad
b. y-intercept $=$ \qquad
c. slope $=$ \qquad
d. graph

Graph of $5 x+3 y=-18$

2. $2 x+y=8$
a. slope-intercept form $=$ \qquad
b. y-intercept $=$ \qquad
c. slope $=$ \qquad
d. graph

3. $3 x+3 y=6$
a. slope-intercept form $=$ \qquad
b. y-intercept $=$ \qquad
c. slope $=$ \qquad
d. graph

4. $5 x+y=0$
a. slope-intercept form $=$ \qquad
b. y-intercept $=$ \qquad
c. \quad slope $=$ \qquad
d. graph

Graph of $5 \boldsymbol{x}+\boldsymbol{y}=\mathbf{0}$

5. $2 x-y=-2$
a. slope-intercept form $=$ \qquad
b. y-intercept $=$ \qquad
c. \quad slope $=$ \qquad
d. graph

Graph of $2 x-y=-2$

6. $x-y=-8$
a. slope-intercept form $=$ \qquad
b. y-intercept $=$ \qquad
c. \quad slope $=$ \qquad
d. graph

Practice

Use the list below to write the correct term for each definition on the line provided.

denominator linear equation numerator	rise run	slope slope-intercept form

1. the vertical change on the graph between two points
2. a form of a linear equation, $y=m x+b$, where m is the slope of the line and b is the y-intercept
3. the ratio of change in the vertical axis (y-axis) to each unit change in the horizontal axis (x-axis) in the form $\frac{\text { rise }}{\text { run }}$; the constant, m, in the linear equation for the slope-intercept form $y=m x+b$
4. the top number of a fraction, indicating the number of equal parts being considered
5. the bottom number of a fraction, indicating the number of equal parts a whole was divided into
6. the horizontal change on a graph between two points
7. an equation whose graph in a coordinate plane is a straight line; an algebraic equation in which the variable quantity or quantities are raised to the zero or first power only and the graph is a straight line

Lesson Five Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.10

Write an equation of a line given any of the following information: two points on the line, its slope and one point on the line, or its graph. Also, find an equation of a new line parallel to a given line, or perpendicular to a given line, through a given point on the new line.

Geometry Body of Knowledge

Standard 1: Points, Lines, Angles, and Planes

- MA.912.G.1.4

Use coordinate geometry to find slopes, parallel lines, perpendicular lines, and equations of lines.

Parallel and Perpendicular Lines

When two lines are on the same coordinate plane, there are two possibilities. Either the two lines are parallel (||) to each other or they intersect each other.

If two lines are parallel to each other, we can say that the lines are always the same distance apart and will never intersect. This happens when the two lines have the same slant. In other words, two parallel lines have equal slopes.

For example, the two lines, $y=5 x+13$ and $y=5 x-6$ are parallel because in each line, m has a value of 5 .

If two lines intersect, they cross each other at some point. You may not see that point where they cross on the particular picture, but remember that lines extend forever and their slopes may be such that they will eventually cross. If the two lines intersect at a right angle or at 90 degrees (${ }^{\circ}$), they are perpendicular (\perp). Keep in mind that when this happens, their slopes will be negative reciprocals of each other.

A line whose equation is $y=\frac{3}{2} x-5$ is perpendicular to a line whose equation is $y=-\frac{2}{3} x+6$. Notice that their slopes are $\frac{3}{2}$ and $-\frac{2}{3}$.

Note: If you multiply the slopes of two perpendicular lines, the product will be -1 , unless one of the lines was vertical.

Practice

Use the slope formula below to find the slopes of $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$. Then multiply the slopes to determine if they are parallel, perpendicular, or neither. Show all your work. Write the answer on the line provided. The first one has been done for you.

slope formula

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

© ((I) Remember:

- If slopes are equal, the lines are parallel.
- If slopes are negative reciprocals, the lines are perpendicular.
parallel

1. $A(3,2), B(-5,6), C(-4,1), D(-2,0)$

$$
\begin{array}{rlr}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & =m=y_{2}-y_{1}= \\
\frac{6-2}{-5-3} & = & \frac{0-1}{-2--4}= \\
\frac{6+-2}{-5+-3} & = & \frac{0+-1}{-2++4}= \\
\frac{4}{-8} & = & -\frac{1}{2} \\
-\frac{1}{2} & = &
\end{array}
$$

The slopes are equal; therefore, the lines are parallel.
5. $A(3,8), B(4,5), C(0,0), D(6,-4)$
6. $A(4,4), B(-4,-4), C(-4,4), D(4,-4)$
7. $A(-2,-2), B(2,4), C(1,6), D(-1,3)$
8. $\quad A(8,-8), B(0,-6), C(3,13), D(-3,-11)$

Put equations in slope-intercept form. Show all your work. Determine if the following lines are parallel, perpendicular, or neither. Write the answer on the line provided.
slope-intercept form
$y=m x+b$

1. $3 x+y=7$
$y+6=3 x$
2. $x-y=-6$
$x+y=6$
3. $x-3 y=-21$
$x+3 y=21$

$$
\text { 4. } \begin{aligned}
5 x-y & =9 \\
5 x-y & =4
\end{aligned}
$$

$$
\text { 5. } \begin{aligned}
3 x-y & =4 \\
4 x-y & =-3
\end{aligned}
$$

$$
\text { 6. } \begin{array}{rl}
& x=6 \\
y & y=-1
\end{array}
$$

$$
\text { 7. } \begin{array}{r}
2 x+3 y=5 \\
3 x-2 y=7
\end{array}
$$

Practice

Use the list below to complete the following statements.

distance horizontal hypotenuse	line segment midpoint parallel	perpendicular slope vertical

1. The slant or \qquad of a line is defined as rise $\frac{\text { run }}{\text { run }}$
2. A line that has no slope is called a \qquad line.
3. The \qquad between two points is the length of the segment that connects the two points.
4. The \qquad is the segment in a right triangle that is opposite the right angle.
5. Lines in the same plane that do not intersect are called
\qquad lines.
6. A line that has zero slope is a \qquad line.
7. The point located exactly halfway between two endpoints of a line segment is called the \qquad .
8. If two lines intersect to form right angles, they are
\qquad lines.
9. The figure that contains two defined endpoints and all the points in between is called a \qquad .

Practice

Match each definition with the correct term. Write the letter on the line provided.
\qquad

1. the square of the hypotenuse (c) of a right triangle is equal to the sum of the square of the legs (a and b), as shown in the equation $c^{2}=a^{2}+b^{2}$
2. two lines, two line segments, or two planes that intersect to form a right angle
3. an angle whose measure is exactly 90°
4. two lines in the same plane that are a constant distance apart; lines with equal slopes
5. two numbers whose product is 1; also called multiplicative inverses
6. to meet or cross at one point
7. a way of expressing a relationship using variables or symbols that represent numbers
8. the result of multiplying numbers together
A. formula
B. intersect
C. parallel lines
D. perpendicular (\perp)
E. product
F. Pythagorean theorem
\qquad
\qquad
\qquad H. right angle

Lesson Six Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 1: Real and Complex Number Systems

- MA.912.A.1.8

Use the zero product property of real numbers in a variety of contexts to identify solutions to equations.

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.7

Rewrite equations of a line into slope-intercept form and standard form.

- MA.912.A.3.10

Write an equation of a line given any of the following information: two points on the line, its slope and one point on the line, or its graph. Also, find an equation of a new line parallel to a given line, or perpendicular to a given line, through a given point on the new line.

Geometry Body of Knowledge

Standard 1: Points, Lines, Angles, and Planes

- MA.912.G.1.4

Use coordinate geometry to find slopes, parallel lines, perpendicular lines, and equations of lines.

Point-Slope Form

We know that if we have two points we can draw a line that connects them. But did you know we can also produce the equation of that line using those points?

To do this, we will use yet another format for the equation of a line. It is called the point-slope form. Notice that it looks a bit like the slopeintercept format, but it has a little extra.

$$
\begin{aligned}
& \left(y-y_{1}\right)=m\left(x-x_{1}\right) \quad \text { point-slope form } \\
& \left(x_{1}, y_{1}\right) \text { is one of the coordinates given } \\
& m=\text { slope }
\end{aligned}
$$

Let's see how this works.

Example 1

Find the equation of the line which passes through points $(3,5)$ and $(-2,1)$.

- Start with the following equation.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

- Find the slope using the two points.

$$
m=\frac{1-5}{-2-3}=\frac{-4}{-5}=\frac{4}{5} \quad \longleftarrow \text { the slope is } \frac{4}{5}
$$

- Select one of the given points $(3,5)$.
- Replace x_{1} and y_{1} with the coordinates from the point you selected, and then replace m with the slope $\left(\frac{4}{5}\right)$ that you found.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-5 & =\frac{4}{5}(x-3)
\end{aligned}
$$

- Simplify.

$$
\begin{aligned}
& y-5=\frac{4}{5}(x-3) \\
& y-5=\frac{4}{5} x-\frac{12}{5} \\
& y=\frac{4}{5} x-\frac{12}{5}+5 \quad \longleftarrow \text { distribute } \frac{4}{5} \\
& y=\frac{4}{5} x-\frac{12}{5}+\frac{25}{5} \longleftarrow \text { add } 5 \text { to both sides } \\
& y=\frac{4}{5} x+\frac{13}{5} \quad \text { get a common denominator } \\
& \text { simplify }
\end{aligned}
$$

This is the equation of the line in slope-intercept form: $y=m x+b$ with $m=\frac{4}{5}, b=\frac{13}{5}$.

We could also transform this equation to standard form of $a x+b y=c$ using a bit of algebra.

$$
\begin{aligned}
y & =\frac{4}{5} x+\frac{13}{5} & & \\
-\frac{4}{5} x+y & =\frac{13}{5} & \longleftarrow & \text { subtract } \frac{4}{5} x \text { from both sides } \\
4 x-5 y & =-13 & \longleftarrow & \text { multiply both sides by }-5
\end{aligned}
$$

How about another example before you try this yourself?

Example 2

Find the equation of the line in both y-intercept and standard form that passes through the points $(-4,0)$ and $(-2,2)$.

- Start with the following equation.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

- Find the slope.

$$
m=\frac{2-0}{-2--4}=\frac{2}{2}=\frac{1}{1}=1 \longleftarrow \text { the slope is } 1
$$

- Select a point.
- Replace x_{1}, y_{1}, and m.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =1(x--2)
\end{aligned}
$$

- Simplify.

$$
\begin{aligned}
& y-2=1(x--2) \\
& y-2=1(x+2) \\
& y-2=x+2
\end{aligned}
$$

$$
y=x+4 \quad \longleftarrow \text { equation in slope-intercept form }
$$

- Transform $y=x+4$ into standard form.

$$
\begin{aligned}
-x+y & =4 \\
x-y & =-4
\end{aligned} \quad \longleftarrow \text { multiply both sides by }-1
$$

Look at some other situations when using the point-slope format is helpful.

Example 3

Write an equation in point-slope form of the line that passes through ($2,-3$) and has a slope of $-\frac{3}{8}$.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

- We can skip finding the slope-it is already done for us!

$$
m=-\frac{3}{8}
$$

- There is no need to select a point because we only have one to choose.
- Replace x_{1}, y_{1}, and m, and simplify.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-(-3) & =-\frac{3}{8}(x-2) \\
y+3 & =-\frac{3}{8}(x-2)
\end{aligned}
$$

Ta-da! We are finished! We have written the equation in point-slope form.

Example 4

Write an equation in point-slope form for a horizontal line passing through the point $(-4,2)$.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

- Slope $=0$ (horizontal lines have zero slope)

$$
m=0
$$

- Use the point $(-4,2)$, replace x_{1}, y_{1}, and m, and simplify.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =0(x-4) \\
y-2 & =0(x+4) \\
y-2 & =0 x+0 \\
y-2 & =0 \\
y & =2
\end{aligned}
$$

All horizontal lines have equations that look like $y=$ "a number." That number will always be the y-coordinate from any point on the line.

Time for some practice...here we go!

Practice

Write an equation in point-slope form for the line that passes through the given point with the given slope.

1. $(7,2), m=-\frac{3}{4}$
2. $(-1,-3), m=8$
3. $(4,-5), m=-\frac{3}{8}$
4. $(2,2), m=0$

Put the following equations of lines into slope-intercept form and standard form.

$$
\begin{array}{cc}
\text { slope-intercept form } & \text { standard form } \\
y=m x+b & a x+b y=c
\end{array}
$$

5. $y-2=\frac{3}{2}(x-8)$
a. slope-intercept form $=$ \qquad
b. standard form $=$ \qquad
6. $y+3=-5(x+1)$
a. \quad slope-intercept form $=$ \qquad
b. standard form $=$ \qquad
7. $y+5=2(x-4)$
a. slope-intercept form $=$ \qquad
b. standard form $=$ \qquad
8. $y-4=-6(x+1)$
a. slope-intercept form $=$ \qquad
b. standard form $=$ \qquad

Write an equation in slope-intercept form for each line below.

Hint: Use point-slope form and convert.

> point-slope form
> $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$
9.

10.

11.

12.

13. $(-2,4),(4,5)$
14. $(1,0),(-3,8)$
15. $(0,0),(7,-7)$
16. $(4,-2),(-2,8)$

Unit Review

Solve the following.

1. Plot points $(3,-2)$ and $(-6,4)$. Draw a triangle and use the Pythagorean theorem below to find the distance between the two points.

Pythagorean theorem

$$
a^{2}+b^{2}=c^{2}
$$

2. Use the distance formula below to find the distance between $(-2,4)$ and $(7,-3)$.

$$
\begin{gathered}
\text { distance formula } \\
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{gathered}
$$

3. Use either the method above or the Pythagorean theorem below to find the distance between $(5,1)$ and $(-1,9)$.

Pythagorean theorem

$a^{2}+b^{2}=c^{2}$
4. On the number line below, find the midpoint between A and B. Use either of the methods below.

- Use the number line and count in from both endpoints of a line segment until you reach the middle to determine the midpoint.
- Use the Method One midpoint formula and add the two endpoints together, then divide by two. Show all your work.

Method One midpoint formula
$\frac{a+b}{2}$

5. On the number line below, find the midpoint of $\overline{B D}$. Use either method above.

Use the list below to correctly describe the following lines. Write the answer on the line provided.

> falling horizontal
> rising vertical
6. \longleftarrow
7.

8.

9.

10. $(3,-8),(5,7)$
11. $(-2,0),(6,-3)$

Use the slope-intercept form below to find the slope for each line.
slope-intercept form

$$
y=m x+b
$$

12. $y=\frac{1}{2} x-7$
13. $y=-2 x+6$

Use the slope formula below to find the slopes of $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$. Then multiply the slopes to determine if they are parallel, perpendicular, or neither. Show all your work. Write the answer on the line provided. .

> slope formula $$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

14. $A(2,-5), B(4,5), C(-3,8), D(2,7)$
15. $A(-4,0), B(6,1), C(4,3), D(-6,2)$

Use the equation $y=-\frac{3}{2} x+4$ to answer each of the following.
16. Give the y-intercept.
17. Give the slope.
18. Graph the line.

$$
\text { Graph of } y=-\frac{3}{2} x+4
$$

19. Write the equation in standard form.

Use the equation $2 x-4 y=-12$ to answer the following.
20. Find the y-intercept. \qquad
21. Find the x-intercept. \qquad
22. Graph the line.

$$
\text { Graph of } 2 x-4 y=-12
$$

27. Write an equation in point-slope form for the line that passes through point $(-2,5)$ with a slope of $\frac{2}{3}$.
28. Put $y-4=\frac{3}{8}(x+2)$ into slope-intercept form.
29. Write an equation in slope-intercept form for the line given.

30. Write an equation in slope-intercept form for the line which passes through points $(-3,8)$ and $(5,7)$.

Unit 9: Having Fun with Functions

Students will learn and use the terminology and symbolism associated with functions.

Unit Focus

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 1: Real and Complex Number Systems

- MA.912.A.1.8

Use the zero product property of real numbers in a variety of contexts to identify solutions to equations.

Standard 2: Relations and Functions

- MA.912.A.2.3

Describe the concept of a function, use function notation, determine whether a given relation is a function, and link equations to functions.

- MA.912.A.2.4

Determine the domain and range of a relation.

- MA.912.A.2.13

Solve real-world problems involving relations and functions.

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.11

Write an equation of a line that models a data set and use the equation or the graph to make predictions. Describe the slope of the line in terms of the data, recognizing that the slope is the rate of change.

Standard 7: Quadratic Equations

- MA.912.A.7.1

Graph quadratic equations with and without graphing technology.

- MA.912.A.7.10

Use graphing technology to find approximate solutions of quadratic equations.

Standard 10: Mathematical Reasoning and Problem Solving

- MA.912.A.10.3

Decide whether a given statement is always, sometimes, or never true (statements involving linear or quadratic expressions, equations, or inequalities, rational or radical expressions, or logarithmic or exponential functions).

Vocabulary

Use the vocabulary words and definitions below as a reference for this unit.
axis of symmetry \qquad vertical line passing through the maximum or minimum point of a parabola
coefficient \qquad the number that multiplies the variable(s) in an algebraic expression
Example: In $4 x y$, the coefficient of $x y$ is 4 . If no number is specified, the coefficient is 1.
coordinates \qquad numbers that correspond to points on a coordinate plane in the form (x, y), or a number that corresponds to a point on a number line
datainformation in the form of numbers gathered for statistical purposes
domain \qquad set of x-values of a relation
element \qquad one of the objects in a set
equation \qquad a mathematical sentence stating that the two expressions have the same value Example: $2 x=10$
estimation \qquad the use of rounding and / or other strategies to determine a reasonably accurate approximation, without calculating an exact answer
Examples: clustering, front-end estimating, grouping, etc.
expression \qquad .a mathematical phrase or part of a number sentence that combines numbers, operation signs, and sometimes variables Examples: $4 r^{2} ; 3 x+2 y ; \sqrt{25}$
An expression does not contain equal ($=$) or inequality $(<,>, \leq, \geq$, or $\neq)$ signs.
factor \qquad a number or expression that divides evenly into another number; one of the numbers multiplied to get a product Examples: 1, 2, 4, 5, 10, and 20 are factors of 20 and $(x+1)$ is one of the factors of $\left(x^{2}-1\right)$.
factoring \qquad expressing a polynomial expression as the product of monomials and polynomials Example: $x^{2}-5 x+4=0$

$$
(x-4)(x-1)=0
$$

FOIL method
a pattern used to multiply two binomials; multiply the first, outside, inside, and last terms:

F First terms
O Outside terms
I Inside terms
L Last terms.
Example:

function notation \qquad a way to name a function that is defined by an equation
Example: In function notation, the equation $x=5 x+4$ is written as $f(x)=5 x+4$.
function (of x) \qquad a relation in which each value of x is paired with a unique value of y

horizontal \qquad parallel to or in the same plane of the horizon	
intersectto meet or cross at one point	
$\text { line }(\leftrightarrows)$...a collection of an infinite number of points forming a straight path extending in opposite directions having unlimited length and no width
linear functionan equation whose graph is a nonvertical line	
maximum	the highest point on the vertex of a parabola, which opens downward
mean (or a	the arithmetic average of a set of numbers; a measure of central tendency
minimum	the lowest point on the vertex of a parabola, which opens upward
ordered pair	.the location of a single point on a rectangular coordinate system where the first and second values represent the position relative to the x-axis and y-axis, respectively Examples: (x, y) or $(3,-4)$
origin ...	the point of intersection of the x - and y-axes in a rectangular coordinate system, where the x-coordinate and y-coordinate are both zero (0)
parabolathe graph of a quadratic equation	
point \qquad a specific location in space that has no discernable length or width	

$\begin{aligned} & \frac{0}{0}= \\ & x=1 \end{aligned}$	
	quadratic equation \qquad an equation in the form of $a x^{2}+b x+c=0$
	quadratic function \qquad an equation in the form $y=a x^{2}+b x+c$, where $a \neq 0$
	rangeset of y-values of a relation
	relationa set of ordered pairs (x, y)
	rootsthe solutions to a quadratic equation
γ	rounded number \qquad a number approximated to a specified place Example: A commonly used rule to round a number is as follows. - If the digit in the first place after the specified place is 5 or more, round up by adding 1 to the digit in the specified place (${ }^{n} 61$ rounded to the nearest hundred is 500). - If the digit in the first place after the specified place is less than 5 , round down by not changing the digit in the specified place ($\underline{4} 41$ rounded to the nearest hundred is 400).
	seta collection of distinct objects or numbers
	slope \qquad the ratio of change in the vertical axis (y-axis) to each unit change in the horizontal axis (x-axis) in the form $\frac{\text { rise }}{\text { run }}$ or $\frac{\Delta y}{\Delta x}$; the constant, m, in the linear equation for the slope-intercept form $y=m x+b$

solution \qquad any value for a variable that makes an equation or inequality a true statement Example: In $y=8+9$
$y=17 \quad 17$ is the solution.
solve \qquad to find all numbers that make an equation or inequality true
value (of a variable) \qquad any of the numbers represented by the variable
variable \qquad any symbol, usually a letter, which could represent a number
vertex \qquad the maximum or minimum point of a parabola
vertical \qquad at right angles to the horizon; straight up and down
vertical line testif any vertical line passes through no more than one point of the graph of a relation, then the relation is a function
x-axis \qquad the horizontal number line on a rectangular coordinate system
x-intercept \qquad the value of x at the point where a line or graph intersects the x-axis; the value of y is zero (0) at this point
y-axis \qquad the vertical number line on a rectangular coordinate system

y-intercept
the value of y at the point where a line or graph intersects the y-axis; the value of x is zero (0) at this point
zero product propertyfor all numbers a and b, if $a b=0$, then $a=0$ and $/$ or $b=0$
zerosthe points where a graph crosses the x-axis; the roots, or x-intercepts, of a quadratic function

Unit 9: Having Fun with Functions

Introduction

We will explore a number of relations through the use of tables and graphs. We will create tables and graphs for specific problems. We will also link equations to functions when given a function.

Lesson One Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 2: Relations and Functions

- MA.912.A.2.3

Describe the concept of a function, use function notation, determine whether a given relation is a function, and link equations to functions.

- MA.912.A.2.4

Determine the domain and range of a relation.

Functions

In the unit on Venn diagrams we learned that a set of ordered pairs, such as $\{(2,4),(3,8),(5,7),(-2,1)\}$, is called a relation. Each element in a relation has a value-an x-value and a y-value (x, y). The ordered pairs are called coordinates (x, y) of a point on a graph.

The set containing all of the x-values is called the domain, while the set of all y-values is called the range.

From the example $\{(2,4),(3,8),(5,7),(-2,1)\}$ the domain would be $\{2,3,5,-2\}$ and the range would be $\{4,8,7,1\}$.

A relation in which no x-value is repeated is called a function. Another way to say that is each element of the domain is paired with only one element of the range.

Set of Ordered Pairs—Relation

Note: Usually values are listed in numerical order. However, for giving the domain (x-values) and the range (y-values) for relations, numerical order is not required. If a value in a domain or in a range is repeated, list the value one time.

Practice

Decide if the relations below are functions. Write yes if it is a function, write no if it is not a function.
\qquad 1. $\{(2,3),(5,6),(4,9),(3,8)\}$
2. $\{(3,6),(4,7),(3,-9),(8,2)\}$
3. $\{(4,2),(2,4),(3,6),(6,3)\}$
4. $\{(4,-1),(5,8),(4,6),(3,0)\}$
5. $\{(10,4),(8,-6),(0,0),(10,3)\}$
6. $\{(6,3),(6,2),(6,0),(6,-2)\}$
7. $\{(4,1),(5,1),(6,1)\}$
8. $\{(3,4),(4,5),(5,6),(6,7),(7,8)\}$

Practice

Give the domain and the range for each relation.

C(I) 2 Remember: The domains and ranges do not have to be listed in numerical order. If a value in a domain or in a range is repeated, list the value one time.

1. $\{(2,3),(5,6),(4,9),(3,8)\}$
a. domain $=$ \qquad
b. \quad range $=$ \qquad
2. $\{(3,6),(4,7),(3,-9),(8,2)\}$
a. domain $=$ \qquad
b. range = \qquad
3. $\{(4,2),(2,4),(3,6),(6,3)\}$
a. \quad domain $=$ \qquad
b. range = \qquad
4. $\{(4,-1),(5,8),(4,6),(3,0)\}$
a. \quad domain $=$ \qquad
b. \quad range $=$ \qquad
5. $\{(10,4),(8,-6),(0,0),(10,3)\}$
a. \quad domain $=$ \qquad
b. \quad range $=$ \qquad
6. $\{(6,3),(6,2),(6,0),(6,-2)\}$
a. domain $=$ \qquad
b. range = \qquad
7. $\{(4,1),(5,1),(6,1)\}$
a. domain $=$ \qquad
b. \quad range $=$ \qquad
8. $\{(3,4),(4,5),(5,6),(6,7),(7,8)\}$
a. domain $=$ \qquad
b. \quad range = \qquad

Graphs of Functions

Using the vertical line test, it is possible to tell from a graph whether a relation is a function or not. If any vertical line (line that is straight up and down) can be drawn that touches the graph at no more than one point of the graph, then the relation is a function. However, if the vertical line touches the graph at more than one point, the relation is not a function.

Tip: A vertical test line can use any straight-edged object, such as a pencil or pen, to perform the test. Place your pencil next to the graph. Line the pencil up vertically with the graph and move it slowly across the graph.

Practice

Determine if these graphs represent functions. Write yes if it is a function. Write no if it is not a function.
\qquad 1.

2.

3.

4.

\qquad 5.

6.

7.

8.

Practice

Use the list below to complete the following statements.

domain	range
function	
ordered pair	relation

1. (x, y) represents $\mathrm{a}(\mathrm{n})$ \qquad .
2. A set of ordered pairs is called $a(n)$ \qquad
3. A relation in which no x-value is repeated is called $\mathrm{a}(\mathrm{n})$
\qquad
4. The set of x-values from a relation is the \qquad .
5. The set containing the y-values from a set of ordered pairs is the

Lesson Two Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Algebra Body of Knowledge

Standard 2: Relations and Functions

- MA.912.A.2.3

Describe the concept of a function, use function notation, determine whether a given relation is a function, and link equations to functions.

The Function of X

Functions are so important that they have their own notation called a function notation. A function notation is a way to name a function defined by an equation. An equation is a mathematical sentence stating that the two expressions have the same value, connected by an equal sign (=). Think of a function as a math machine that will work problems the way you instruct it.

Function Machine

Notice the notation on the function machine above- $f(x)=3 x+2$. The $f(x)$ is read "the function of x." We sometimes shorten that and read the entire sentence as f of x equals $3 x+2$.

The machine works when you put in numbers from a domain (set of x-values). So if our domain is $\{2,4,5,9\}$ and we use the function machine, we get the following.

So now we see our range (y-values) is $\{8,14,17,29\}$.
Together the domain and range give us the relation.

$$
\{(2,8),(4,14),(5,17),(9,29)\}
$$

This relation is a function because no y-value is repeated.
Although $f(x)$ is most commonly used, it is not unusual to see a function expressed as $g(x)$ or $h(x)$ and occasionally other letters as well. Did you notice we work these the same as if the problem had read $y=3 x+2$?

Let's practice a bit, shall we?

Practice

Use the domain below to give the range for the following functions.

$$
\{-4,-2,0,1,3\}
$$

(c) $2 \rightarrow$ Remember: The range does not have to be listed in numerical order. If a value in a range is repeated, list the value one time.

1. $f(x)=2 x-9$
2. $f(x)=5 x+4$
3. $g(x)=-2 x-3$

4. $h(x)=x^{2}+2$

Use the domain below to give the range for the following functions.

$$
\{-4,-2,0,1,3\}
$$

7. $f(x)=(5 x)^{2}$
8. $g(x)=(x+3)^{2}$

Lesson Three Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.11

Write an equation of a line that models a data set and use the equation or the graph to make predictions. Describe the slope of the line in terms of the data, recognizing that the slope is the rate of change.

Standard 10: Mathematical Reasoning and Problem Solving

- MA.912.A.10.3

Decide whether a given statement is always, sometimes, or never true (statements involving linear or quadratic expressions, equations, or inequalities, rational or radical expressions, or logarithmic or exponential functions).

Graphing Functions

We graph functions in the same way we do equations. We can still identify slopes and y-intercepts from functions whose graph is a line. Remember the slope-intercept form $y=m x+b$? Well, if a function is expressed as $f(x)=m x+b$, it is a linear function. A linear function is an equation whose graph is a nonvertical line.

Sometimes a graph will pass through the origin. That happens when $f(0)=0$ or when the point $(0,0)$ is in the relation.

As we know, the set

$$
\{(0,0),(1,60),(2,120),(3,180),(4,240),(5,300)\}
$$

can be called a relation (which is any set of ordered pairs). These ordered pairs could be graphed by hand on a coordinate grid or on a graphing calculator. A function is a relation in which each value of x is paired with a unique value of y. This relation is also a function because its graph is a nonvertical line.

Think about This!

- As the first coordinate increases by 1 , the second coordinate increase by 60 .

- If these points were plotted, they would lie in a line.
- An equation for the line would be $y=60 x$.
- The line will pass through the origin so the x-intercept is $(0,0)$ and the y-intercept is $(0,0)$.
© () Remember: The x-intercept is the value of x on a graph when y is zero. The line passes through the x-axis at this point. The y-intercept is the value of y on a graph when x is zero. The line passes through the y-axis at this point.
- The slope of the line will be 60 or $\frac{60}{1}$ because for each increase of 1 in x, there is an increase of 60 in y. From any given point on the line, a horizontal (\leftrightarrows) movement of 1 unit followed by a vertical (\downarrow) movement of 60 units will produce another point on the line.
- If the ordered pairs are describing the distance traveled at a rate of 60 miles per hour, then x could represent the number of hours and y would represent the distance traveled.

From the function $f(x)=60 x$ or its graph, we can predict how far we could travel in 8 hours at 60 mph . If $f(x)=60 x$ and $x=8, f(8)=60(8)$. We could travel 480 miles in 8 hours.

- If the ordered pairs are describing the number of calories in a certain brand of candy, then x could represent the number of pieces of candy and y would represent the number of calories.

What function could be written to describe the graph above?
The function would be

$$
f(x)=60 x
$$

because the relationship between x and y in each ordered pair indicates that x times $60=y$.

Practice

Complete the following for the set of ordered pairs below.

$$
\{(0,0),(1,1),(2,2),(3,3),(4,4),(5,5)\}
$$

1. As the first coordinate increases by 1 , the second coordinate increases by \qquad .
2. If these points are plotted, they \qquad (always, sometimes, never) lie in a line.
3. This line \qquad (always, sometimes, never) passes through the origin.
4. The slope of the line will be \qquad because for each increase of 1 in x, there is an increase of \qquad in y. From any given point on the line, a horizontal (\hookrightarrow) movement of 1 unit followed by a vertical (\downarrow) movement of \qquad unit(s) will produce another point on the line.
5. The function for the line would be $f(x)=$ \qquad .
6. Create a situation the set of order pairs might describe.

Practice

Graph each function two times. Use a table of values in one of your graphs and the slope-intercept method in the other. Use x-values of $-2,0$, and 2 in your table.

1. $f(x)=3 x$
a. Table of Values Method

Table of Values

$f(x)=3 x$	
x	$f(x)$
-2	
0	
2	

b.

Graph of $f(x)=3 x$

c. Slope-Intercept Method

$$
\begin{aligned}
& f(x)=m x+b \\
& f(x)=3 x
\end{aligned}
$$

Remember: In the function $f(x)=3 x$, the variable b, which is the y-intercept, is zero. A variable is any symbol, usually a letter, which could represent a number.

Slope is \qquad or $\overline{1}$
d.

Graph of $f(x)=3 x$

2. $f(x)=-2 x+1$
a. Table of Values Method

Table of Values

$f(x)=-2 x+1$	
x	$f(x)$
-2	
0	
2	

b.

Graph of $f(x)=-2 x+1$

c. Slope-Intercept Method

$$
\begin{aligned}
& f(x)=m x+b \\
& f(x)=-2 x+1
\end{aligned}
$$

Slope is \qquad or $\overline{1}$
d.

Graph of $f(x)=-2 x+1$

Linear Relations in the Real World

As you look ahead and consider the cost of higher education, you will find that tuition costs tend to represent a linear relationship. Universities tend to have a fixed price for each semester hour of credit. There is often a difference in the fixed price for a semester hour of undergraduate credit and a semester hour of graduate credit. Special areas of study may have increased costs. The following set of practices deals with costs involved in higher education. You will likely find technology, such as computer programs and some calculators support the making of tables and graphs, which are often used when considering data to be displayed when making comparisons.

Practice

Answer the following.

1. The function used to determine the tuition for each semester hour of undergraduate credit for Florida residents at Florida State University was $f(x)=84.58 x+4.9 x$ for all main-campus students. If a student was enrolled in a course at an extension site, the equation was $g(x)=84.58 x$. Most students take 12 to 15 hours each semester.

Complete the table below.
Tuition for Florida State University—Florida Residents

Number of Semester Hours \boldsymbol{x}	Cost for Main- Campus Students (Florida Residents) $\boldsymbol{f}(\boldsymbol{x})=84.58 \boldsymbol{x}+4.9 \boldsymbol{x}$	Cost for Extension- Site Students (Florida Residents) $\boldsymbol{g}(\boldsymbol{x})=84.58 \boldsymbol{x}$
12		
13		
14		
15		

If these points were plotted on a coordinate grid, they would appear linear. If we make a graph of $g(x)=84.58 x$ when x can be any number, we tend to show the line passing through the points.

The additional charge of $\$ 4.90$ per semester hour for main-campus students used to improve the overall campus infrastructure for all students is called the transportation access fee.
2. The function used to determine the tuition for each semester hour of undergraduate credit for non-Florida residents at Florida State University was $f(x)=402.71 x+4.9 x$ for all main-campus students. If a student was enrolled in a course at an extension site, the equation was $g(x)=402.71 x$. Most students take 12 to 15 hours each semester.

Complete the table below.
Tuition for Florida State University—Non-Florida Residents

Number of Semester Hours \boldsymbol{x}	Cost for Main- Campus Students (Non-Florida Residents) $\boldsymbol{f}(\boldsymbol{x})=402.71 \boldsymbol{x}+4.9 \boldsymbol{x}$	Cost for Extension- Site Students (Non-Florida Residents) $\boldsymbol{g}(\boldsymbol{x})=402.71 \boldsymbol{x}$
12		
13		
14		
15		

3. The graph below shows the three functions related to tuition costs for Florida residents who are undergraduate students, graduate students, and law students. The total cost per semester hour was rounded to the nearest $\$ 10$ and included the transportation fee. The points were connected to emphasize the slope of each line. (The slope directly relates to per hour costs.)

Use the graph to estimate the cost per semester hour for each of the three types for Florida residents.
a. undergraduate students: approximately per semester hour
b. graduate students: approximately \qquad per semester hour
c. law students: approximately \qquad per semester hour

Tuition for Florida State University—Florida Residents

4. The cost per semester hour including the transportation access fee for each of the three types for non-Florida residents was as follows.

- undergraduate school: $\$ 402.71+4.90$ per semester hour
- graduate school: $\$ 670.92+4.90$ per semester hour
- law school: $\$ 712.59+4.90$ per semester hour

A graph is provided below for this data.
Tuition for Florida State University—Non-Florida Residents

Write three statements comparing tuition for each type of student, based on being Florida residents or non-Florida residents. Explain whether you prefer to use equation, table, or graph models when writing such comparison statements.

Statement 1: \qquad
\qquad
\qquad

Statement 2: \qquad
\qquad
\qquad

Statement 3: \qquad
\qquad
\qquad

Preference: \qquad

Explanation: \qquad
\qquad
\qquad
5. The following functions would allow you to compute the tuition for a semester hour of credit in an undergraduate course at the University of Florida for Florida residents and non-Florida residents.
$f(x)=92.68 x$ where $f(x)$ is the total tuition for a Florida resident for x number of hours of undergraduate-level courses.
$g(x)=460.28 x$ where $g(x)$ is the total tuition for a non-Florida resident for x number of hours of undergraduate-level courses.

Complete the table below.

Tuition for University of Florida-Florida Residents
and Non-Florida Residents

Number of Semester Hours \boldsymbol{x}	Cost for Florida Resident in Undergraduate Courses $\boldsymbol{f}(\boldsymbol{x})=92.68 \boldsymbol{x}$	Cost for Non-Florida Resident in Undergraduate Courses $\boldsymbol{g}(\boldsymbol{x})=\mathbf{4 6 0 . 2 8} \boldsymbol{x}$
6		
9		
12		
15		

6. Complete the following.
a. A Florida resident paid $\$ 2,873.64$ in tuition for 14 hours of graduate-level courses. What was the cost per credit hour?

Answer: \qquad

b. A non-Florida resident received $\$ 27.96$ in change from his payment of $\$ 10,000$ for 12 credit hours in law courses. What was the cost per credit hour? Round to the nearest dollar.

Answer:
c. A non-Florida resident has a budget of $\$ 25,000$ for tuition for two semesters and is taking graduate-level courses with a cost per credit hour of $\$ 774.53$. What is the greatest number of hours she can take and not exceed her budget?

Answer: \qquad

More about the Slope of a Line

You are a member of a private club that offers valet parking for its members. The club charges you $\$ 3.00$ to have the parking attendant park and retrieve your car and $\$ 2$ per hour for parking. A set of ordered pairs for this situation would include the following.

$$
\{(1,5),(2,7),(3,9),(4,11),(5,13)\}
$$

If x represents the number of hours your car is parked, then y would represent the cost.

The equation for this line would be $y=2 x+3$.

In function notation, $f(x)=2 x+3$.

valet parking for members

Practice

Complete the following for the set of ordered pairs below.

$$
\{(0,10),(1,13),(2,16),(3,19),(4,22),(5,25)\}
$$

1. As the first coordinate increases by 1 , the second coordinate increases by \qquad -.
2. If these points were plotted, they \qquad would (always, sometimes, never) lie in a line.
3. The line \qquad (will, will not) pass through the origin.
4. The slope of the line will be \qquad or $\overline{1}$ because for each increase of 1 in x, there is an increase of \qquad in y. From any given point on the line, a horizontal movement of 1 unit, followed by a vertical movement of \qquad unit(s), will produce another point on the line.
5. The equation for the line would be $y=$ \qquad and in function notation it would be $f(x)=$ \qquad .
6. Create a situation the set of order pairs might describe.

Situation:

Practice

Answer the following.

1. The cost for Florida residents per credit hour at Tallahassee Community College was $\$ 53$ per credit hour, plus a $\$ 10$ student service fee and $\$ 10$ for the math lab.
a. Write a function that would permit tuition and fees to be calculated for x number of hours.

Function: \qquad
b. If a graph were made for your function, the slope would be
\qquad and the y-intercept would be located at $(0, \ldots)$. You know that an active student takes one or more credit hours. Therefore, the y-intercept has meaning for the general equation but not for its specific application when used for tuition and fee costs.
2. Tuition at the University of Miami was $\$ 1,074$ per credit hour for undergraduate students taking 1-11 hours. In addition, the university charged $\$ 299.50$ for a combination of four different student fees: activity, athletic, wellness center, and university.
a. Write a function that would permit tuition and fees to be calculated for x number of hours where x can be from 1 through 11.

Function: \qquad
b. Use your function to determine the cost of tuition and fees for a student taking 9 hours.

Answer:
3. The University of Miami charged a flat rate of $\$ 12,919$ for 12-20 credit hours plus $\$ 226.50$ for a combination of three fees for full-time students.
a. Write a function that would represent the total cost of tuition and fees for a student taking 15 credit hours.

Function: \qquad
b. Use your function to determine the total cost for 12 hours.

Answer: \qquad
c. Based on your answer for \mathbf{b}, what is the mean (or average) cost per credit hour when 12 credit hours are taken? Round to the nearest hundredth.

Answer: \qquad
d. Use your function to determine the total cost for 20 hours.

Answer: \qquad

Practice

Answer the following.

1. Harvard charged a flat rate of $\$ 26,066$ for tuition, plus fees of $\$ 1,142$ for health services, $\$ 1,852$ for student services, and $\$ 35$ for the undergraduate council. Determine the mean cost per credit hour for a student taking 15 credit hours. Round to the nearest hundredth.

Answer: \qquad
2. The cost per credit hour at the undergraduate level at Florida A \& M University was $\$ 90.09$, plus fees of $\$ 45$ for transportation and access, $\$ 59$ for health if taking 6 or more hours, and a materials and supply fee ranging from $\$ 15$ to $\$ 60$. Assuming the materials and supply fee was $\$ 37.50$, write a function that would allow you to calculate cost for x number of hours where x represents 6 or more.

Function: \qquad
3. Consider the following.

Public Undergraduate Tuition Rates and Fees

Institution of Higher Learning (Public)	Cost of Tuition and Fees for 15 Undergraduate Credit Hours for Florida Resident
Florida A \& M University	$\$ 1,492.85$
Florida State University	$\$ 1,342.20$
Tallahassee Community College	$\$ 815.00$
University of Florida	$\$ 1,390.20$

Private Undergraduate Tuition Rates and Fees

Institution of Higher Learning (Private)	Cost of Tuition and Fees for 15 Undergraduate Credit Hours
Harvard University	$\$ 29,095.00$
University of Miami	$\$ 13,145.50$

a. Use the figures in the table above and on the previous page. Explain why you could not divide each of the costs by 15 and then multiply by 12 to get the costs for 12 credit hours for each institution.

Explanation: \qquad
\qquad
\qquad
\qquad
b. If you were considering these schools in your future, would you find information pertaining to tuition and fees more helpful if this were modeled by equations, tables, or graphs? Explain the basis for your choice.

Explanation: \qquad
\qquad
\qquad
\qquad

Lesson Four Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Algebra Body of Knowledge

Standard 1: Real and Complex Number Systems

- MA.912.A.1.8

Use the zero product property of real numbers in a variety of contexts to identify solutions to equations.

Standard 7: Quadratic Equations

- MA.912.A.7.1

Graph quadratic equations with and without graphing technology.

- MA.912.A.7.10

Use graphing technology to find approximate solutions of quadratic equations.

Graphing Quadratics

Any function whose equation is in the format $f(x)=a x^{2}+b x+c$ (when $a \neq 0$) is called a quadratic function. The presence of the $a x^{2}$ term is a big hint that this is a quadratic expression. You'll also remember that the $a x^{2}$ term is a hint that factoring is involved for solving x.

Graphs of quadratic functions are called parabolas and have a shape that looks like an airplane wing.

Let's look at two examples.
Example 1

$$
f(x)=x^{2}+4 x-1
$$

We will use a table of values to graph this function.
Graph of $f(x)=x^{2}+4 x-1$

Table of Values

$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{\mathbf{2}}+\mathbf{4 x} \mathbf{- 1}$	
\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-5	4
-4	-1
-3	-4
-2	-5
-1	-4
0	-1
1	4

We plot the points, and knowing that the graph will look like an airplane wing, we connect the dots with a smooth curve. A coefficient is the number part in front of an algebraic term. The coefficient in front of x^{2} in the function $f(x)=x^{2}+4 x-1$ is understood to be a +1 .

Because the x value of the coefficient is positive, the parabola will open upward and will have a lowest point, or vertex, called the minimum point.

To tell exactly where that minimum point will be on our graph, we use information from the equation. Remembering that $f(x)=a x^{2}+b x+c$, we use $x=\frac{-b}{2 a}$ to tell us the x-value of the lowest point.

So from our function $f(x)=x^{2}+4 x-1$, where $a=1, b=4, c=-1$, we get the following.

$$
\begin{aligned}
& x=\frac{-b}{2 a} \\
& x=\frac{-4}{2(1)} \\
& x=\frac{-4}{2} \\
& x=-2
\end{aligned}
$$

So, the minimum point occurs when $x=-2$.
Using the function again,
(《囚 Remember: $f(x)=a x^{2}+b x+c$

$$
\begin{aligned}
& f(x)=x^{2}+4 x-1, \text { where } \\
& a=1, b=4, c=-1
\end{aligned}
$$

$$
\begin{aligned}
& f(-2)=(-2)^{2}+4(-2)-1 \\
& f(-2)=4+-8-1 \\
& f(-2)=-5
\end{aligned}
$$

Therefore, the minimum point is $(-2,-5)$.
Another thing we can tell from the equation $x=-2$ in the box above is the axis of symmetry. Recall that the graph of $x=-2$ is a vertical line through -2 on the x-axis. This is the line that divides the parabola exactly in half. If you fold the graph along the axis of symmetry, each half of the parabola will match the other side exactly.

Note that the graph is a function because it passes the vertical line test. Any vertical line you draw will only intersect the graph (parabola) at one point.

Let's look at another example.

Example 2

$$
f(x)=-x^{2}+2 x-3
$$

Notice that the coefficient of x^{2} is -1 .
Because the value of the coefficient of x is negative, the parabola will open downward and have a highest point, or vertex, called a maximum point.

Find the axis of symmetry.

Our maximum point occurs when $x=1$. Let's make a table of values (be sure to include 1 as a value for x).
Table of Values

$\boldsymbol{f}(\boldsymbol{x})=\mathbf{-} \boldsymbol{x}^{2}+\mathbf{2 x}-\mathbf{3}$	
\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-1	-6
0	-3
1	-2
2	-3
3	-6

Graph the ordered pairs and connect them with a smooth curve. Note that the vertex of the parabola has a maximum point at $(1,-2)$ and the line of symmetry is at $x=1$.

Refer to the examples above as you try the following.

Practice

For each function do the following.

- Find the equation for the axis of symmetry.
- Find the coordinates of the vertex of the graph.
- Tell whether the vertex is a maximum or minimum vertex.
- Graph the function.

1. $f(x)=x^{2}+2 x-3$
a. axis of symmetry $=$ \qquad
b. coordinates of vertex $=$ \qquad
c. maximum or minimum $=$ \qquad
d. graph

$$
\text { Graph of } f(x)=x^{2}+2 x-3
$$

Table of Values

$f(x)=x^{2}+2 x-3$	
x	$f(x)$

2. $f(x)=x^{2}-2 x-3$
a. axis of symmetry $=$ \qquad
b. coordinates of vertex $=$ \qquad
c. maximum or minimum $=$ \qquad
d. graph

3. $f(x)=-x^{2}+1$
a. axis of symmetry $=$ \qquad
b. coordinates of vertex $=$ \qquad
c. maximum or minimum $=$ \qquad
d. graph

Graph of $f(x)=-x^{2}+1$

Table of Values

$f(x)=-x^{2}+1$	
x	$f(x)$

4. $f(x)=x^{2}+2 x$
a. axis of symmetry $=$ \qquad
b. coordinates of vertex $=$ \qquad
c. maximum or minimum $=$ \qquad
d. graph
Table of Values

$f(x)=x^{2}+2 x$	
x	$f(x)$

5. $g(x)=-x^{2}-4 x+4$
a. axis of symmetry $=$ \qquad
b. coordinates of vertex $=$ \qquad
c. maximum or minimum $=$ \qquad
d. graph

6. $f(x)=3 x^{2}+6 x-2$
a. axis of symmetry $=$ \qquad
b. coordinates of vertex $=$ \qquad
c. maximum or minimum $=$ \qquad
d. graph

7. $g(x)=-x^{2}+2 x$
a. axis of symmetry $=$ \qquad
b. coordinates of vertex $=$ \qquad
c. maximum or minimum $=$ \qquad
d. graph

$$
\text { Graph of } g(x)=-x^{2}+2 x
$$

Table of Values

$g(x)=-x^{2}+2 x$	
x	$g(x)$

8. $g(x)=(x-1)^{2}$

Note: You must first use the FOIL method.
(c) $2 \rightarrow$ Remember: F First terms

O Outside terms
I Inside terms
L Last terms.
a. axis of symmetry $=$ \qquad
b. coordinates of vertex $=$ \qquad
c. \quad maximum or minimum $=$ \qquad
d. graph

$$
\text { Graph of } g(x)=(x-1)^{2}
$$

Table of Values

$g(x)=(x-1)^{2}$	
x	$g(x)$

Solving Quadratic Equations

The solutions to quadratic equations are called the roots of the equations. In factoring quadratic equations, set each factor equal to 0 to solve for values of x. Those values of x are the roots of the equation.

Example

Solve by factoring

$$
\begin{aligned}
& x^{2}+10 x+9=0 \\
& (x+1)(x+9)=0
\end{aligned}
$$

Set each factor equal to 0

We can also find these roots by graphing the related function $f(x)=x^{2}+10 x+9$ and finding the x-intercepts. The x-intercepts are the points where the graph crosses the x-axis, which are also known as the zeros of the function.

Let's see how this works.

$$
f(x)=x^{2}+10 x+9
$$

The equation for the axis of symmetry is as follows.

$$
\begin{aligned}
& x=\frac{-10}{2(1)} \\
& x=-5 \\
& f(-5)=(-5)^{2}+10(-5)+9 \\
& f(-5)=-16
\end{aligned}
$$

The vertex is at $(-5,-16)$.

Find the x-intercepts by letting $f(x)=0$.

$$
0=x^{2}+10 x+9
$$

The x-intercepts are at $(-9,-1)$. Thus the solutions are -9 and -1 .

$$
\text { Graph of } f(x)=x^{2}+10 x+9
$$

You may find the solutions more efficiently by using your graphing calculator. When the x-intercepts are not integers, use your calculator to estimate them to the nearest integer.

Practice

Solve the following by graphing. Show each step indicated.
(\square

Check your work using your graphing calculator.

1. $x^{2}+3 x+2=0$
a. axis of symmetry $=$ \qquad
b. x-intercepts $=$ \qquad
c. graph

d. solutions = \qquad
2. $x^{2}-3 x+2=0$
a. axis of symmetry $=$ \qquad
b. x-intercepts $=$ \qquad
c. graph

$$
\text { Graph of } f(x)=x^{2}-3 x+2
$$

d. solutions $=$ \qquad
3. $-x^{2}-3 x-2=0$
a. axis of symmetry $=$ \qquad
b. x-intercepts $=$ \qquad
c. graph

d. solutions $=$ \qquad
4. $x^{2}+9 x+14=0$
a. axis of symmetry $=$ \qquad
b. x-intercepts $=$ \qquad
c. graph

d. solutions $=$ \qquad
5. $-x^{2}+9 x-14=0$
a. axis of symmetry $=$ \qquad
b. x-intercepts $=$ \qquad
c. graph

d. solutions $=$ \qquad
6. $2 x^{2}+3 x+1=0$
a. axis of symmetry $=$ \qquad
b. x-intercepts $=$ \qquad
c. graph

d. solutions $=$ \qquad
7. $-2 x^{2}-5 x-3=0$
a. axis of symmetry $=$ \qquad
b. x-intercepts $=$ \qquad
c. graph

$$
\text { Graph of } f(x)=-2 x^{2}-5 x-3
$$

d. solutions $=$ \qquad
8. $2 x^{2}-5 x=0$
a. axis of symmetry $=$ \qquad
b. x-intercepts $=$ \qquad
c. graph

d. solutions $=$ \qquad
9. $x^{2}+6 x+6=0$
a. axis of symmetry $=$ \qquad
b. x-intercepts $=$ \qquad
Hint: Use your calculator to estimate x-intercepts.
c. graph

d. solutions $=$ \qquad
10. $x^{2}-x-4=0$
a. axis of symmetry $=$ \qquad
b. x-intercepts $=$ \qquad
Hint: Use your calculator to estimate x-intercepts.
c. graph

d. solutions $=$ \qquad

Practice

Match each definition with the correct term. Write the letter on the line provided.
\qquad

1. the lowest point on the vertex of a parabola, which opens upward
2. set of y-values of a relation
3. the value of x at the point where a line or graph intersects the x-axis; the value of y is zero (0) at this point
4. set of x-values of a relation
5. a set of ordered pairs (x, y)
6. vertical line passing through the maximum or minimum point of a parabola
7. the highest point on the vertex of a parabola, which opens downward
8. a relation in which each value of x is paired with a unique value of y
9. the maximum or minimum point of a parabola
A. axis of symmetry
B. domain
C. function (of x)
D. maximum
E. minimum
F. range
G. relation
H. vertex
I. x-intercept

Unit Review

Use the set below to answer the following.

$$
\{(2,6),(3,-1),(7,2),(-3,5),(0,-2)\}
$$

1. Is the set a relation? \qquad
2. Give the domain. \qquad
(c) Remember: The domains and ranges do not have to be listed in numerical order. If a value in a domain or in a range is repeated, list the value one time.
3. Give the range. \qquad
4. Is the set a function? \qquad

Determine if the graphs represent functions.

$\{-2,-1,0,1,2\}$
(c) $3 \rightarrow$ Remember: The domains and ranges do not have to be listed in numerical order. If a value in a domain or in a range is repeated, list the value one time.
10. $h(x)=-3 x+2$

Use the relation below to answer the following.

$$
\{(0,0),(1,2),(2,4),(3,6),(4,8)\}
$$

11. If these points are plotted, they will (always, sometimes, never) lie in a line.
12. The function for the line will be $f(x)=$ \qquad .
13. Create a situation the relation might describe.

For each function, fill in the table of values and then graph the function.
14. $f(x)=2 x-2$
a. Table of Values

$f(x)=\mathbf{2 x - 2}$	
\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-2	
0	
2	

b. graph

Graph of $f(x)=2 x-2$

15. $f(x)=-3 x+1$
a. Table of Values

$f(x)=\mathbf{- 3 x}+1$	
x	$f(x)$
-2	
0	
2	

b. graph

16. In this equation, $f(x)=92.68 x$ represents the total tuition for a Florida resident at the University of Florida. The x in the equation represents the number of hours of courses an undergraduate student takes.

Calculate the tuition for a student who takes 14 hours.
Answer: \qquad
17. The University of Miami charges $\$ 1,000$ for each credit hour plus $\$ 226.50$ for various fees for full time students.
a. Write a function to express the total cost for a semester.

$$
f(x)=
$$

\qquad
b. Calculate the total cost for a student taking 15 hours.

Answer: \qquad

For each function do the following.

- Find the equation for the axis of symmetry.
- Find the coordinates of the vertex of the graph.
- Tell whether the vertex is a maximum or minimum.
- Graph the function.

18. $f(x)=x^{2}+2 x-3$
a. axis of symmetry $=$ \qquad
b. coordinates of vertex $=$ \qquad
c. maximum or minimum $=$ \qquad
d. graph

19. $g(x)=-x^{2}+x$
a. axis of symmetry $=$ \qquad
b. coordinates of vertex $=$ \qquad
c. maximum or minimum $=$ \qquad
d. graph

For each equation, use your graphing calculator to do the following.

- Find the axis of symmetry.
- Find the x-intercepts.
- Graph the function.
- Find the solutions.

20. $x^{2}+4 x-5=0$
a. axis of symmetry $=$ \qquad
b. x-intercepts $=$ \qquad
c. graph

$$
\text { Graph of } f(x)=x^{2}+4 x-5
$$

d. solutions $=$ \qquad
21. $x^{2}+2 x-6=0$
a. axis of symmetry $=$ \qquad
b. x-intercepts $=$ \qquad
c. graph

Graph of $f(x)=x^{2}+2 x-6$

d. solutions = \qquad

Unit 10: X or ($X, 1$) Marks the Spot!

This unit shows students how to solve equations algebraically and graphically.

Unit Focus

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 1: Real and Complex Number Systems

- MA.912.A.1.8

Use the zero product property of real numbers in a variety of contexts to identify solutions to equations.

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.2

Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality.

- MA.912.A.3.5

Symbolically represent and solve multi-step and real-world applications that involve linear equations and inequalities.

- MA.912.A.3.12

Graph a linear equation or inequality in two variables with and without graphing technology. Write an equation or inequality represented by a given graph.

- MA.912.A.3.13

Use a graph to approximate the solution of a system of linear equations or inequalities in two variables with and without technology.

- MA.912.A.3.14

Solve systems of linear equations and inequalities in two and three variables using graphical, substitution, and elimination methods.

- MA.912.A.3.15

Solve real-world problems involving systems of linear equations and inequalities in two and three variables.

Standard 4: Polynomials

- MA.912.A.4.3

Factor polynomial expressions.

Standard 7: Quadratic Equations

- MA.912.A.7.2

Solve quadratic equations over the real numbers by factoring, and by using the quadratic formula.

- MA.912.A.7.8

Use quadratic equations to solve real-world problems.

Standard 10: Mathematical Reasoning and Problem Solving

- MA.912.A.10.1

Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guessing- and-checking, solving a simpler problem, writing an equation, working backwards, and creating a table.

- MA.912.A.10.2

Decide whether a solution is reasonable in the context of the original situation.

- MA.912.A.10.3

Decide whether a given statement is always, sometimes, or never true (statements involving linear or quadratic expressions, equations, or inequalities, rational or radical expressions, or logarithmic or exponential functions).

Vocabulary

Use the vocabulary words and definitions below as a reference for this unit.
area (A) \qquad the measure, in square units, of the inside region of a closed two-dimensional figure; the number of square units needed to cover a surface
Example: A rectangle with sides of 4 units by 6 units has an area of 24 square units.
axes (of a graph)the horizontal and vertical number lines used in a coordinate plane system; (singular: axis)
coefficient \qquad the number that multiplies the variable(s) in an algebraic expression
Example: In $4 x y$, the coefficient of $x y$ is 4 . If no number is specified, the coefficient is 1 .
consecutive \qquad in order Example: 6, 7, 8 are consecutive whole numbers and $4,6,8$ are consecutive even numbers.
coordinate grid or plane ... a two-dimensional network of horizontal and vertical lines that are parallel and evenly spaced; especially designed for locating points, displaying data, or drawing maps
coordinates \qquad numbers that correspond to points on a coordinate plane in the form (x, y), or a number that corresponds to a point on a number line
distributive propertythe product of a number and the sum or difference of two numbers is equal to the sum or difference of the two products
Examples: $\quad x(a+b)=a x+b x$

$$
5(10+8)=5 \cdot 10+5 \cdot 8
$$

equationa mathematical sentence stating that the two expressions have the same value Example: $2 x=10$

equivalent expression	...expressions that have the same value but are presented in a different format using the properties of numbers

even integer.........................any integer divisible by 2 ; any integer with the digit $0,2,4,6$, or 8 in the units place; any integer in the set $\{\ldots,-4,-2,0,2,4, \ldots\}$
factor \qquad a number or expression that divides evenly into another number; one of the numbers multiplied to get a product
Examples: 1, 2, 4, 5, 10, and 20 are factors of 20 and $(x+1)$ is one of the factors of $\left(x^{2}-1\right)$.
factored form a number or expression expressed as the product of prime numbers and variables, where no variable has an exponent greater than 1
factoring \qquad expressing a polynomial expression as the product of monomials and polynomials Example: $x^{2}-5 x+4=0$ $(x-4)(x-1)=0$

FOIL method
a pattern used to multiply two binomials; multiply the first, outside, inside, and last terms:
F First terms
O Outside terms
I Inside terms
L Last terms.
Example:

formula
.a way of expressing a relationship using variables or symbols that represent numbers
fraction
any part of a whole
Example: One-half written in fractional form is $\frac{1}{2}$
graph \qquad a drawing used to represent data Example: bar graphs, double bar graphs, circle graphs, and line graphs
graph of an equation all points whose coordinates are solutions of an equation
inequalitya sentence that states one expression is greater than $(>)$, greater than or equal to (\geq), less than $(<)$, less than or equal to ((\leq), or not equal to (\neq) another expression
Examples: $a \neq 5$ or $x<7$ or $2 y+3 \geq 11$
infinite \qquad having no boundaries or limits
integers \qquad the numbers in the set
$\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$

$\begin{aligned} & \frac{0}{0}= \\ & \text { 等 } \end{aligned}$	
intersect \qquad to meet or cross at one point	
intersectionthe point at which lines or curves meet	
	length (l) \qquad a one-dimensional measure that is the measurable property of line segments
	line (\longleftrightarrow) \qquad a collection of an infinite number of points forming a straight path extending in opposite directions having unlimited length and no width
	monomial \qquad a number, variable, or the product of a number and one or more variables; a polynomial with only one term Examples: $8 \quad x \quad 4 c \quad 2 y^{2} \quad-3 \quad \frac{x y z^{2}}{9}$
negative integersintegers less than zero	
negative numbersnumbers less than zero	
	odd integer \qquad any integer not divisible by 2 ; any integer with the digit $1,3,5,7$, or 9 in the units place; any integer in the set $\{\ldots,-5,-3,-1,1,3,5, \ldots\}$
	ordered pair \qquad the location of a single point on a rectangular coordinate system where the first and second values represent the position relative to the x-axis and y-axis, respectively Examples: (x, y) or $(3,-4)$
	parallel (I) \qquad being an equal distance at every point so as to never intersect
	point \qquad a specific location in space that has no discernable length or width

polynomial \qquad a monomial or sum of monomials; any rational expression with no variable in the denominator Examples: $x^{3}+4 x^{2}-x+8 \quad 5 m p^{2}$ $-7 x^{2} y^{2}+2 x^{2}+3$
positive integers \qquad integers greater than zero
product \qquad the result of multiplying numbers together Example: In $6 \times 8=48$, the product is 48 .
quadratic equation \qquad an equation in the form of $a x^{2}+b x+c=0$
quadratic formula \qquad formula used to solve any quadratic equation; if $a x^{2}+b x+c=0$ and $a \neq 0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
rectangle \qquad a parallelogram with four right angles

simplify an expressionto perform as many of the indicated operations as possible
solution \qquad any value for a variable that makes an equation or inequality a true statement Example: In $y=8+9$
$y=17 \quad 17$ is the solution.
solution set (\{ \}) \qquad the set of values that make an equation or inequality true
Example: $\{5,-5\}$ is the solution set for $3 x^{2}=75$.
solve \qquad to find all numbers that make an equation or inequality true
standard form (of a
quadratic equation)
quadratic equation) $a x^{2}+b x+c=0$, where a, b, and c are integers (not multiples of each other) and $a>0$
substituteto replace a variable with a numeral Example: 8(a) + 3 $8(5)+3$
substitution \qquad a method used to solve a system of equations in which variables are replaced with known values or algebraic expressions
sum \qquad the result of adding numbers together Example: In $6+8=14$, the sum is 14 .
system of equations
a group of two or more equations that are related to the same situation and share variables
Example: The solution to a system of equations is an ordered number set that makes all of the equations true.
table (or chart)a data display that organizes information about a topic into categories
term \qquad .a number, variable, product, or quotient in an expression
Example: In the expression $4 x^{2}+3 x+x$, the terms are $4 x^{2}, 3 x$, and x.
value (of a variable) \qquad any of the numbers represented by the variable
variable \qquad any symbol, usually a letter, which could represent a number

Venn diagram .overlapping circles used to illustrate relationships among sets
vertical \qquad at right angles to the horizon; straight up and down
\qquad
a one-dimensional measure of something side to side

x-intercept \qquad the value of x at the point where a line or graph intersects the x-axis; the value of y is zero (0) at this point
y-intercept \qquad the value of y at the point where a line or graph intersects the y-axis; the value of x is zero (0) at this point
zero product propertyfor all numbers a and b, if $a b=0$, then $a=0$ and/ or $b=0$

Unit 10: X or (X, Y) Marks the Spot!

Introduction

In this unit, we will expand our knowledge of problem solving to find solutions to a variety of equations, inequalities, systems of equations, and real-world situations.

Lesson One Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

$\begin{aligned} & \frac{0}{0}= \\ & \text { 菏 } \end{aligned}$	
	Algebra Body of Knowledge
	Standard 1: Real and Complex Number Systems - MA.912.A.1.8 Use the zero product property of real numbers in a variety of contexts to identify solutions to equations.
	Standard 3: Linear Equations and Inequalities - MA.912.A.3.2 Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality. - MA.912.A.3.5 Symbolically represent and solve multi-step and real-world applications that involve linear equations and inequalities.
	Standard 4: Polynomials - MA.912.A.4.3 Factor polynomial expressions.
	Standard 7: Quadratic Equations - MA.912.A.7.2 Solve quadratic equations over the real numbers by factoring, and by using the quadratic formula. - MA.912.A.7.8 Use quadratic equations to solve real-world problems.
	Standard 10: Mathematical Reasoning and Problem Solving - MA.912.A.10.1 Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guessing- and-checking, solving a simpler problem, writing an equation, working backwards, and creating a table.
	- MA.912.A.10.2 Decide whether a solution is reasonable in the context of the original situation.

Quadratic Equations

When we solve an equation like $x+7=12$, we remember that we must subtract 7 from both sides of the equal sign.

$$
\begin{aligned}
x+7 & =12 \\
x+7-7 & =12-7 \\
x & =5
\end{aligned}
$$

That leaves us with $x=5$. We know that 5 is the only solution or value that can replace x and make the $x+7=12$ true.

$$
\text { If } \begin{aligned}
x+7 & =12, \text { and } \\
x & =5 \quad \text { is true, then } \\
5+7 & =12 .
\end{aligned}
$$

Suppose you have an equation that looks like $(x+7)(x-3)=0$. This means there are two numbers, one in each set of parentheses, that when multiplied together, have a product of 0 . What kinds of numbers can be multiplied and equal 0 ?

Look at the following options.

$$
2 \times-2=-4 \quad \frac{1}{5} \times 5=1 \quad-\frac{4}{7} \times \frac{7}{4}=-1
$$

The only way for numbers to be multiplied together with a result of zero is if one of the numbers is a 0 .

$$
a \times 0=0
$$

Looking back at $(x+7)(x-3)=0$, we understand that there are two factors, $(x+7)$ and $(x-3)$. The only way to multiply them and get a product of 0 is if one of them is equal to zero.

This leads us to a way to solve the equation. Since we don't know which of the terms equals 0 , we cover all the options and assume either could be equal to zero.

$$
\begin{aligned}
& \text { If } x+7=0 \\
& \text { then } x=-7 . \\
& \text { If } x-3=0, \\
& \text { then } x=3
\end{aligned}
$$

We now have two options which could replace x in the original equation and make it true. Let's replace x with -7 and 3 , one at a time.

$$
\begin{array}{rlrl}
(x+7)(x-3) & =0 & (x+7)(x-3) & =0 \\
(-7+7)(-7-3) & =0 & (3+7)(3-3) & =0 \\
(0)(-10) & =0 & (10)(0) & =0 \\
0 & =0 & 0 & =0
\end{array}
$$

Therefore, because either value of x gives us a true statement, we see that the solution set for $(x+7)(x-3)=0$ is $\{-7,3\}$.

Now you try the items in the following practice.

Practice

Find the solution sets. Refer to pages 715 and 716 as needed.

1. $(x+4)(x-2)=0$

2. $(x-5)(x+3)=0$

3. $(x-5)(x-7)=0$

4. $(x+6)(x+1)=0$

5. $(x-2)(x-2)=0$
$\{\ldots, \quad$ _ $\}$

Factoring to Solve Equations

Often, equations are not given to us in factored form like those on the previous pages. Looking at $x^{2}+x=30$, we notice the x^{2} term which tells us this is a quadratic equation (an equation in the form $a x^{2}+b x+c=0$). This term also tells us to be on the lookout for two answers in our solution set.

You may solve this problem by trial and error. However, we can also solve $x^{2}+x=30$ using a format called standard form (of a quadratic equation). This format is written with the terms in a special order:

- the x^{2} term first
- then the x-term
- then the numerical term followed by $=0$.

For our original equation,

$$
\begin{aligned}
x^{2}+x & =30 \\
x^{2}+x-30 & =30-30 \longleftarrow \text { put in standard form } \\
x^{2}+x-30 & =0
\end{aligned}
$$

Now that we have the proper format, we can factor the quadratic polynomial.

Clll Remember: Factoring expresses a polynomial as the product of monomials and polynomials.

Example 1

Solve by factoring

$$
\begin{aligned}
x^{2}+x-30 & =0 \\
x+6)(x-5) & =0
\end{aligned}
$$

Set each factor equal to 0

Therefore, the solution set is $\{-6,5\}$.

Example 2

Solve by factoring

$$
\begin{aligned}
x^{2} & =5 x-4 \\
x^{2}-5 x+4 & =0 \\
(x-4)(x-1) & =0
\end{aligned}
$$

Set each factor equal to 0

Now it's your turn to practice on the following page.

Practice

Find the solution sets. Refer to pages 719 and 720 as needed.

1. $x^{2}-x=42$

2. $x^{2}-5 x=14$

3. $x^{2}=-5 x-6$

\qquad \}
4. $x^{2}-x=12$

5. $x^{2}=2 x+8$

6. $x^{2}-2 x=15$
7. $x^{2}+8 x=-15$

8. $x^{2}-3 x=0$

9. $x^{2}=-5 x$

10. $x^{2}-4=0$

11. $x^{2}=9$

12. $3 x^{2}-3=0$

13. $2 x^{2}=18$

Use the list below to write the correct term for each definition on the line provided.

equation factor product	solution solve value (of a variable)

1. a mathematical sentence stating that the two expressions have the same value
2. to find all numbers that make an equation or inequality true
3. any of the numbers represented by the variable
4. any value for a variable that makes an equation or inequality a true statement
5. the result of multiplying numbers together
6. a number or expression that divides evenly into another number; one of the numbers multiplied to get a product

Practice

Match each definition with the correct term. Write the letter on the line provided.
\qquad 1. an equation in the form of
$a x^{2}+b x+c=0$
2. a monomial or sum of monomials; any rational expression with no variable in the denominator
3. the set of values that make an equation or inequality true
4. expressing a polynomial expression as the product of monomials and polynomials
\qquad 5. a number, variable, or the product of a number and one or more variables; a polynomial with only one term
6. a number or expression expressed as the product of prime numbers and variables, where no variable has an exponent greater than 1
A. factored form
B. factoring
C. monomial
D. polynomial
E. quadratic
equation
F. solution set ($\{$ \})

Solving Word Problems

We can also use the processes on pages 715-716 and 719-720 to solve word problems. Let's see how.

Example 1

Two consecutive (in order) positive integers (integers greater than zero) have a product of 110 . Find the integers.

$$
\begin{aligned}
\text { let the } 1^{\text {st }} \text { integer } & =x \\
\text { and the } 2^{\text {nd }} \text { integer } & =x+1 \\
x(x+1) & =110 \\
x^{2}+x & =110 \\
x^{2}+x-110 & =0 \\
(x-10)(x+11) & =0 \\
x-10 & =0 \\
x & \text { or } \\
x+11= & x \\
x & \text { or } \\
x & =-11
\end{aligned}
$$

Since the problem asked for positive integers, we must eliminate -11 as an answer. Therefore, the two integers are $x=10$ and $x+1=11$.
(c) 3 Remember: Integers are the numbers in the set $\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$.

Example 2

Billy has a garden that is 2 feet longer than it is wide. If the area (A) of his garden is 48 square feet, what are the dimensions of his garden?

If we knew the width (w), we could find the length (l), which is 2 feet longer. Since we don't know the width, let's represent it with x. The length will then be $x+2$.

$$
\begin{aligned}
\text { width } & =x \\
\text { length } & =x+2
\end{aligned}
$$

The area (A) of a rectangle can be found using the formula length (l) times width (w).

$A=l w$
$A=48$
So, $\quad x(x+2)=48$

$$
x^{2}+2 x=48
$$

$$
x^{2}+2 x-48=0
$$

$$
(x+8)(x-6)=0
$$

$$
x+8=0 \quad \text { or } \quad x-6=0
$$

$$
x=-8 \quad \text { or } \quad x=6
$$

A garden cannot be -8 feet long, so we must use only the 6 as a value for x. So, the width of the garden is 6 feet and the length is 8 feet.

Practice

Solve each problem. Refer to pages 726 and 727 as needed.

1. The product of two consecutive positive integers is 72 . Find the integers.

Answer: \qquad
2. The product of two consecutive positive integers is 90 . Find the integers.

Answer: \qquad
3. The product of two consecutive negative odd integers is 35 . Find the integers.

Answer: \qquad
4. The product of two consecutive negative odd integers is 143 . Find the integers.

Answer: \qquad
5. Sara's photo is 5 inches by 7 inches. When she adds a frame, she gets an area of 63 square inches. What is the width of the frame?

Answer: \qquad inches

6. Bob wants to build a doghouse that is 2 feet longer than it is wide. He's building it on a concrete slab that will leave 2 feet of concrete slab visible on each side. If the area of the doghouse is 48 square feet, what are the dimensions of the concrete slab?

Answer: \qquad feet x \qquad feet

7. Marianne's scarf is 5 inches longer than it is wide. If the area of her scarf is 84 square inches, what are its dimensions?

Answer: \qquad inches x \qquad inches

Practice

Use the list below to complete the following statements.

| area (A) length (l) positive integers
 consecutive negative integers
 integers rectangle
 odd integers | width (w) |
| :--- | :--- | :--- |

1. Integers that are less than zero are \qquad .
2. Integers that are greater than zero are \qquad .
3. Integers that are not divisible by 2 are \qquad .
4. The measure in square units of the inside region of a closed two-dimensional figure is called the \qquad .
5. A parallelogram with four right angles is called a(n)
\qquad .
6. Numbers in order are \qquad .
7. To find the area (A) of a rectangle, you multiply the
\qquad by the \qquad .
8. Numbers in the set $\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$ are called
\qquad .

Answer the following.
9. The length of a rectangle can \qquad (always, sometimes, never) be a negative number.

Using the Quadratic Formula

Sometimes an equation seems difficult to factor. When this happens, you may need to use the quadratic formula. Remember that quadratic equations use the format below.

$$
a x^{2}+b x+c=0
$$

The quadratic formula uses the information from the equation and looks like the following.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Compare the equation with the formula and notice how all the same letters are just in different places.

Let's see how the quadratic formula is used to solve the following equation.

In the equation, $a=4, b=1$, and $c=-5$. These values are substituted into the quadratic formula below.

$$
\begin{aligned}
& 4 x^{2}+x-5=0 \\
& \begin{array}{l}
a=4 \quad b=1 \quad c=-5 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{-1 \pm \sqrt{(1)^{2}-4(4)(-5)}}{2(4)} \\
x=\frac{-1 \pm \sqrt{1-(-80)}}{8} \\
x=\frac{-1 \pm \sqrt{81}}{8} \\
x=\frac{-1 \pm 9}{8} \\
x=\frac{-1+9}{8} \text { or values } \quad x=\frac{-1-9}{8} \\
x=\frac{8}{8} \quad \text { or } \quad x=\frac{-10}{8} \\
x=1 \quad \text { or } \quad x=\frac{-5}{4} \quad \text { values } a=4, b=1 \text {, and } c=-5 \text { substituted }
\end{array} \text { simplify } \\
& x=\text { the solution set is }\left\{1, \frac{-5}{4}\right\}
\end{aligned}
$$

C(I) Remember: The symbol \pm means plus or minus. Therefore, \pm means we have two factors. One is found by adding and the other by subtracting.

Let's look at another example.

$$
\begin{aligned}
& 2 x^{2}+5 x+3=0 \\
& a=2 \quad b=5 \quad c=3 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-5 \pm \sqrt{(5)^{2}-4(2)(3)}}{2(2)} \\
& x=\frac{-5 \pm \sqrt{25-24}}{4} \\
& x=\frac{-5 \pm \sqrt{1}}{4} \\
& x=\frac{-5 \pm 1}{4} \\
& x=\frac{-5+1}{4} \quad \text { or } \quad x=\frac{-5-1}{4} \\
& x=\frac{-4}{4} \quad \text { or } \quad x=\frac{-6}{4} \\
& x=-1 \quad \text { or } \quad x=\frac{-3}{2} \quad \text { values }
\end{aligned}
$$

Often your answer will not simplify all the way to a fraction or integer. Some answers will look like $\frac{-3 \pm \sqrt{13}}{6}$. You can check your work by using a graphing calculator or another advanced-level calculator.

We can even use the quadratic formula when solving word problems. However, before you start using the quadratic formula, it is important to remember to put the equation you are working with in the correct format. The equation must look like the following.

$$
a x^{2}+b x+c=0
$$

Look at this example.

If a rectangle has an area of 20 and its dimensions are as shown, find the actual length and width of the rectangle.

$$
\begin{array}{rlrl}
(x+6)(x-2) & =20 & & \longleftarrow \\
\text { set up the equation } \\
x^{2}+4 x-12 & =20 & & \longleftarrow \\
x^{2}+4 x-32 & =0 & & \text { FOIL—First, Outside, Inside, Last } \\
(x+8)(x-4) & =0 & & \text { format }\left(a x^{2}+b x+c=0\right) \\
x+8=0 & \text { or } & x-4=0 & \\
x=-8 & \text { factor } \\
x=-8 & \text { or } \quad & x=4 &
\end{array}
$$

$x \neq-8$ because that would \longleftarrow first check to see if solutions are result in negative lengths. reasonable
©(I) Remember: The symbol \neq means is not equal to.
$x+6 \longrightarrow 4+6=10 \quad 4-2=2 \quad \begin{aligned} & \text { then check answer by replacing } x \\ & \text { with } 4\end{aligned}$
$x-2 \longrightarrow 4-2=2$
The length and width of the rectangle are 10 and 2.

Practice

Use the quadratic formula below to solve the following equations.
-

Check your work using a calculator.

quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

1. $2 x^{2}+5 x+3=0$
2. $2 x^{2}+3 x+1=0$
3. $4 x^{2}+3 x-1=0$
4. $6 x^{2}+5 x+1=0$
5. $4 x^{2}-11 x+6=0$
6. $2 x^{2}-x-3=0$

$$
\text { 7. } 2 x^{2}-3 x+1=0
$$

8. $9 x^{2}-3 x-5=0$
9. $8 x^{2}-6 x-2=0$
10. $9 x^{2}+9 x-4=0$
11. Jacob wants to build a deck that is $(x+7)$ units long and $(x+3)$ units wide. If the area of his deck is 117 square units, what are the dimensions of his deck?

Answer: \qquad units x \qquad units

12. Cecilia and Roberto are thinking of 2 consecutive odd integers whose product is 143 . Find the integers.

First use the guess and check method. Then check by solving.
Answer: \qquad and \qquad

Practice

Use the quadratic formula below to solve the following equations.
日

Show work and check your work with a calculator.

quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

1. $2 x^{2}+7 x+6=0$
2. $5 x^{2}+16 x+3=0$
3. $6 x^{2}+5 x+1=0$
4. $9 x^{2}+9 x+2=0$
5. $10 x^{2}+7 x+1=0$
6. $10 x^{2}-7 x+1=0$

$$
\text { 7. } x^{2}+2 x-3=0
$$

8. $x^{2}+2 x-15=0$
9. $x^{2}-5 x+6=0$
10. $x^{2}-9 x+20=0$
11. If the sides of a rectangular walkway are $(x+3)$ units and $(x-6)$ units, and the area is 10 square units, find the dimensions of the walkway.

Answer: \qquad units x \qquad units
12. Jordan is thinking of 2 consecutive even integers. If the product of her integers is 168 , find the numbers.

Hint: You could use the guess and check problem-solving strategy to solve.

Answer: \qquad and \qquad

Lesson Two Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Writing Process Strand

Standard 3: Prewriting

- LA.910.3.1.3

The student will prewrite by using organizational strategies and tools (e.g., technology, spreadsheet, outline, chart, table, graph, Venn diagram, web, story map, plot pyramid) to develop a personal organizational style.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.12

Graph a linear equation or inequality in two variables with and without graphing technology. Write an equation or inequality represented by a given graph.

- MA.912.A.3.13

Use a graph to approximate the solution of a system of linear equations or inequalities in two variables with and without technology.

- MA.912.A.3.14

Solve systems of linear equations and inequalities in two and three variables using graphical, substitution, and elimination methods.

- MA.912.A.3.15

Solve real-world problems involving systems of linear equations and inequalities in two and three variables.

Standard 10: Mathematical Reasoning and Problem Solving

- MA.912.A.10.1

Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guessing- and-checking, solving a simpler problem, writing an equation, working backwards, and creating a table.

Systems of Equations

When we look at an equation like $x+y=5$, we see that because there are two variables, there are many possible solutions. For instance,

- if $x=5$, then $y=0$
- if $x=2$, then $y=3$
- if $x=-4$, then $y=9$
- if $x=2.5$, then $y=2.5$, etc.

Another equation such as $x-y=1$ allows a specific solution to be determined. Taken together, these two equations help to limit the possible solutions.

When taken together, we call this a system of equations. A system of equations is a group of two or more equations that are related to the same situation and share the same variables. Look at the equations below.

$$
\begin{aligned}
& x+y=5 \\
& x-y=1
\end{aligned}
$$

One possible way to solve the system of equations above is to graph each equation on the same set of axes. Use a table of values like those on the following page to help determine two possible points for each line (\longleftrightarrow).

Table of Values

$x+y=\mathbf{5}$	
x	y
0	5
5	0

Table of Values

$\boldsymbol{x}-\boldsymbol{y}=\mathbf{1}$	
\boldsymbol{x}	\boldsymbol{y}
0	-1
1	0

Notice that the values in the table represent the x-intercepts and y-intercepts.

Plot the points for the first equation on the coordinate grid or plane below, then draw a line connecting them. Do the same for the second set of points.

We see from the graph above that the two lines intersect or cross at a point. That point $(3,2)$ is the solution set for both equations. It is the only point
that makes both equations true. You can check your work by replacing x with 3 and y with 2 in both equations to see if they produce true statements.

You can also produce this graph on your graphing calculator. To closely estimate the coordinates of the points of the graph, move the cursor, the blinking dot, along one line until it gets to the point of intersection.

Although graphing is one way to deal with systems of equations; however, it is not always the most accurate method. If our graph paper is not perfect, our pencil is not super-sharp, or the point of intersection is not at a corner on the grid, we may not get the correct answer.

The system can also be solved algebraically with more accuracy. Let's see how that works.

We know from past experience that we can solve problems more easily when there is only one variable. So, our job is to eliminate a variable. If we look at the two equations vertically (straight up and down), we see that, by adding in columns, the y 's will disappear.

$$
\begin{aligned}
x+y & =5 \\
x-y & =1 \\
\hline 2 x+0 & =6
\end{aligned}
$$

This leaves us with a new equation to solve:

$$
\begin{aligned}
2 x+0 & =6 \\
2 x & =6 \\
\frac{2 x}{2} & =\frac{6}{2} \longleftarrow \text { divide both sides by } 2 \\
x & =3
\end{aligned}
$$

We've found the value for x; now we must find the value of y. Use either of the original equations and replace the x with 3 . The example below uses the first one.

$$
\begin{aligned}
x+y & =5 \\
3+y & =5 \\
3-3+y & =5-3 \\
y & =2
\end{aligned}
$$

So, our solution set is $\{3,2\}$.

Let's try another! We'll solve and then graph this time.

$$
\begin{aligned}
& 2 x+y=6 \\
& \frac{-2 x+2 y}{}=-12 \\
& \hline 0+3 y=-6 \\
& \frac{\not y}{3}=\frac{-6}{3}=\frac{-2}{1} \\
& y=-2 \\
&=6 \\
& 2 x+-2 \\
& 2 x+-2+2=6+2 \\
& 2 x=8 \\
& \frac{2 x}{2}=\frac{8}{2}=\frac{4}{1} \\
& x=4
\end{aligned} \quad \text { add to eliminate the } x^{\prime} s
$$

Our solution set is $\{4,-2\}$.
Now let's see how graphing the two equations is done on the following page.

Note: Watch for these special situations.

- If the graphs of the equations are the same line, then the two equations are equivalent and have an infinite (that is, limitless) number of possible solutions.
- If the graphs do not intersect at all, they are parallel (II), and are an equal distance at every point. They have no possible solutions. The solution set would be empty-\{ \}.

Practice

Solve each system of equations algebraically. Use the table of values to solve and graph both equations on the graphs provided. Refer to pages 748-752 as needed.

Check your work with a graphing calculator by replacing x and y in both equations with the coordinates of the point of intersection if one exists.

Hint: Two of the following sets of equations are equivalent expressions and will have the same line with an infinite number of possible solutions. See note on the previous page.

Table of Values Table of Values

1. $\begin{aligned} x-y & =-1 \\ x+y & =7\end{aligned}$

$$
x+y=7
$$

$x+y=7$	
x	y

Graph of $x-y=-1$ and $x+y=7$

2. $2 x-y=4$ $x+y=5$

Table of Values Table of Values

$2 x-y=4$	
x	y

$x+y=5$	
x	y
0	5
5	0

Graph of $2 x-y=4$ and $x+y=5$

3. $4 x-y=2$
$-2 x+y=0$

Table of Values Table of Values

$4 x-y=2$	
x	y

$-2 x+y=0$	
x	y

Graph of $4 x-y=2$ and $-2 x+y=0$

4. $x-2 y=4$ $2 x-4 y=8$

Table of Values Table of Values

$x-2 y=4$	
x	y

$2 x-4 y=8$	
x	y

Graph of $x-2 y=4$ and $2 x-4 y=8$

5. $2 x+y=8$
$-2 x+y=-4$

Table of Values Table of Values

$2 x+y=8$	
x	y

Graph of $2 x+y=8$ and $-2 x+y=-4$

6. $3 x-2 y=-1$ $-6 x+4 y=2$

Table of Values Table of Values

$3 x-2 y=-1$	
x	y

$-6 x+4 y=2$	
x	y

Graph of $3 x-2 y=-1$ and $-6 x+4 y=2$

Using Substitution to Solve Equations

There are other processes we can use to solve systems of equations. Let's take a look at some of the options.

Example 1

Suppose our two equations are as follows.

$$
\begin{aligned}
2 x+3 y & =14 \\
x & =4
\end{aligned}
$$

To solve this system, we could use a method called substitution. We simply put the value of x from the second equation in for the x in the first equation.

$$
\begin{aligned}
2 x+3 y & =14 \\
2(4)+3 y & =14 \\
8+3 y & =14 \\
8-8+3 y & =14-8 \\
3 y & =6 \\
\frac{3 y}{3} & =\frac{6}{3} \\
y & =2
\end{aligned}
$$

The solution set is $\{4,2\}$.

Example 2

This one is a little more complex.
Below are our two equations.

$$
\begin{aligned}
4 x-y & =-2 \\
x & =y+4
\end{aligned}
$$

We can substitute $(y+4)$ from the second equation in for x in the first equation.

$$
\left.\begin{array}{rl}
4 x-y & =-2 \\
4(y+4)-y & =-2 \\
4 y+16-y & =-2 \\
3 y+16 & =-2 \\
3 y & =-18 \\
y & =-6
\end{array}\right\} \text { substitute }(y+4) \text { for } \text { sistribute }
$$

Notice that $(y+4)$ is in parentheses. This helps us remember to distribute when the time comes.

Now we must find the value of x. Use an original equation and substitute -6 for y and then solve for x.

Now try the practice on the following page.

Practice

Solve each system of equations algebraically. Use the substitution method to solve and graph both equations on the graphs provided. Refer to pages 759 and 760 as needed.

1. $3 x-2 y=6$

$$
x=4
$$

Graph of $3 x-2 y=6$ and $x=4$

2. $5 x-y=9$

$$
x=2 y
$$

Graph of $5 x-y=9$ and $x=2 y$

3. $x+y=5$

$$
x=y+1
$$

Graph of $x+y=5$ and $x=y+1$

Graph of $5 x+y=-15$ and $y=1-x$

5. $\begin{aligned} x & =2 y+15 \\ 4 x+2 y & =10\end{aligned}$

6. $x+2 y=14$

$$
x=3 y-11
$$

Using Magic to Solve Equations

There are times when neither the algebraic or substitution method seems like a good option. If the equations should look similar to these, we have another option.

Example 1

$$
\begin{aligned}
& 5 x+12 y=41 \\
& 9 x+4 y=21
\end{aligned}
$$

We have to perform a little "math-magic" to solve this problem. When looking at these equations, you should see that if the $4 y$ were $-12 y$ instead, we could add vertically and the y 's would disappear from the equation.

So, our job is to make that $4 y$ into $-12 y$. We could do that by multiplying $4 y$ by -3 . The only catch is that we must multiply the whole equation by -3 to keep everything balanced.

$$
\begin{aligned}
9 x+4 y & =21 \longleftarrow \text { original equation } \\
-3(9 x+4 y & =21) \longleftarrow \text { multiply equation by }-3 \\
-27 x+(-12 y) & =-63 \longleftarrow \text { new } 2^{\text {nd }} \text { equation }
\end{aligned}
$$

Now line up the equations, replacing the second one with the new equation.

$$
\begin{aligned}
& 5 x+12 y=41 \longleftarrow \text { original } 1^{\text {st }} \text { equation } \\
&-27 x+(-12 y)=-63 \\
& \hline-22 x+0=-22 \\
&-22 x=-22 \\
& x=1 \\
& \text { new } 2^{\text {nd }} \text { equation } \\
& \text { subtract vertically } \\
& \text { simplify }
\end{aligned}
$$

Now that we know the value of x, we can replace x with 1 in the original equation and solve for y.

Our solution set is $\{1,3\}$. Be sure to put the answers in the correct order because they are an ordered pair, where the first and second value represent a position on a coordinate grid or system.

Sometimes you may have to perform "math-magic" on both equations to get numbers to "disappear."

Example 2

$$
\begin{aligned}
& 3 x-4 y=2 \\
& 2 x+3 y=7
\end{aligned}
$$

After close inspection, we see that this will take double magic. If the coefficients of the x^{\prime} s could be made into a $6 x$ and a $-6 x$, this problem might be solvable. Let's try!

Multiply the first equation by 2 and the second equation by -3 .

$$
\begin{aligned}
& 2(3 x-4 y=2)\left.\longrightarrow \quad \begin{array}{rl}
6 x-8 y & =4 \\
-3(2 x+3 y=7) & \longrightarrow \\
-6 x-9 y & =-21 \\
\hline 0-17 y & =-17 \\
-17 y & =-17 \\
y & =1
\end{array}\right) 2^{\text {nt }} \text { equation } \bullet 2 \\
& \text { equation } \bullet-3
\end{aligned}
$$

Use $y=1$ to find the value of x using an original equation.

$$
\begin{aligned}
3 x-4 y & =2 \longleftarrow \text { original } 1^{\text {st }} \text { equation } \\
3 x-4(1) & =2 \longleftarrow \text { substitute (1) for } y \\
3 x-4 & =2 \\
3 x & =6 \\
x & =2
\end{aligned}
$$

The solution set is $\{2,1\}$.
Now it's your turn to practice on the next page.

Practice

Solve each of the following systems of equations. Refer to pages 767 and 768 as needed. Check your work.

1. $3 x+y=7$

$$
2 x-3 y=12
$$

2. $3 x+y=11$
$x+2 y=12$
3. $9 x+8 y=-45$

$$
6 x+y=9
$$

Solving More Word Problems

Let's see how we might use the methods we've learned to solve word problems.

Example 1

Twice the sum of two integers is 20 . The larger integer is 1 more than twice the smaller. Find the integers.

Let $S=$ the smaller integer
Let $L=$ the larger integer
Now, write equations to fit the wording in the problem.

Since the smaller integer is 3 , the larger one is $2(3)+1$ or 7 . The integers are 3 and 7 .

Example 2

Three tennis lessons and three golf lessons cost $\$ 60$. Nine tennis lessons and six golf lessons cost $\$ 147$. Find the cost of one tennis lesson and one golf lesson.

Let $T=$ the cost of 1 tennis lesson
Let $G=$ the cost of 1 golf lesson
Use the variables to interpret the sentences and make equations.

$$
\begin{aligned}
& 3 T+3 G=60 \\
& 9 T+6 G=147
\end{aligned}
$$

Make the coefficients of G match by multiplying the first equation by -2 .

$$
\begin{aligned}
-6 T+-6 G & =-120 \\
9 T+6 G & =147 \\
9 T+0 & \longleftarrow 27 \\
3 T & \longleftarrow 27 \\
T & \longleftarrow
\end{aligned}
$$

We know that one tennis lesson costs $\$ 9$, so let's find the cost of one golf lesson.

$$
\begin{aligned}
3 T+3 G & =60 \longleftarrow \\
3(9)+3 G & =60 \longleftarrow \\
27+3 G & =60 \longleftarrow \text { substiginal } 1^{\text {st }} \text { equation } \\
27 & \text { 9) for } T \\
3 G & =33 \longleftarrow \text { simplify } \\
G & =11
\end{aligned}
$$

So, one tennis lesson costs $\$ 9$ and one golf lesson costs $\$ 11$.
Now you try a few items on the next page.

Practice

Solve each of the following. Refer to pages 754 and 755 as needed.

1. The sum of two numbers is 35 . The larger one is 4 times the smaller one. Find the two numbers.

Answer: \qquad and \qquad
2. A 90 -foot cable is cut into two pieces. One piece is 18 feet longer than the shorter one. Find the lengths of the two pieces.

Answer: \qquad feet and \qquad feet
3. Joey spent $\$ 98$ on a pair of jeans and a shirt. The jeans cost $\$ 20$ more than the shirt. How much did each cost?

Answer: jeans = \$ \qquad and shirt = \$ \qquad
4. Four sandwiches and three drinks cost $\$ 13$. Two drinks cost $\$ 0.60$ more than one sandwich. Find the cost of one drink and one sandwich.

Answer: \$ \qquad
5. The football team at Leon High School has 7 more members than the team from Central High School. Together the two teams have 83 players. How many players does each team have?

Answer: Central = \qquad and Leon $=$ \qquad
6. Andre earns $\$ 40$ a week less than Sylvia. Together they earn $\$ 360$ each week. How much does each earn?

Answer: Sylvia = \$ \qquad and Andre = \$ \qquad

Practice

Match each definition with the correct term. Write the letter on the line provided.
\qquad 1. a two-dimensional network of horizontal and vertical lines that are parallel and evenly spaced
2. all points whose coordinates are solutions of an equation
\qquad 3. a group of two or more equations that are related to the same situation and share variables
4. a drawing used to represent data
5. at right angles to the horizon; straight up and down
6. any symbol, usually a letter, which could represent a number
7. the horizontal and vertical number lines used in a coordinate plane system
8. a data display that organizes information about a topic into categories
9. to meet or cross at one point
G. table (or chart)
A. axes (of a graph)
B. coordinate grid or plane
C. graph
D. graph of an equation
E. intersect
F. system of equations
H. variable
I. vertical

Use the list below to write the correct term for each definition on the line provided.

coefficient infinite ordered pair	parallel (II) simplify an expression substitute	substitution

1. a method used to solve a system of equations in which variables are replaced with known values or algebraic expressions
2. the result of adding numbers together
3. the location of a single point on a rectangular coordinate system where the first and second values represent the position relative to the x-axis and y-axis, respectively
4. to perform as many of the indicated operations as possible
5. to replace a variable with a numeral
6. having no boundaries or limits
7. being an equal distance at every point so as to never intersect
8. the number that multiplies the variable(s) in an algebraic expression

Lesson Three Purpose

Reading Process Strand

Standard 6: Vocabulary Development

- LA.910.1.6.1

The student will use new vocabulary that is introduced and taught directly.

- LA.910.1.6.2

The student will listen to, read, and discuss familiar and conceptually challenging text.

- LA.910.1.6.5

The student will relate new vocabulary to familiar words.

Algebra Body of Knowledge

Standard 3: Linear Equations and Inequalities

- MA.912.A.3.12

Graph a linear equation or inequality in two variables with and without graphing technology. Write an equation or inequality represented by a given graph.

- MA.912.A.3.13

Use a graph to approximate the solution of a system of linear equations or inequalities in two variables with and without technology.

- MA.912.A.3.14

Solve systems of linear equations and inequalities in two and three variables using graphical, substitution, and elimination methods.

Standard 10: Mathematical Reasoning and Problem Solving

- MA.912.A.10.3

Decide whether a given statement is always, sometimes, or never true (statements involving linear or quadratic expressions, equations, or inequalities rational or radical expressions or logarithmic or exponential functions).

Graphing Inequalities

When graphing inequalities, you use much the same processes you used when graphing equations. The difference is that inequalities give you infinitely larger sets of solutions. In addition, your results with inequalities are always expressed using the following terms in relation to another expression:

- greater than (>)
- greater than or equal to (\geq)
- less than ($<$)
- less than or equal to (\leq)
- not equal to (\neq).

Therefore, we cannot graph an inequality as a line or a point. We must illustrate the entire set of answers by shading our graphs.

For instance, when we graph $y=x+2$ using points, we found by using the table of values below, we get the line seen in Graph 1 below.

Table of Values

$y=x+2$	
x	y
0	2
3	5

Graph 1 of $y=x+2$

But when we graph $y>x+2$, we use the line we found in Graph 1 as a boundary. Since $y \neq x+2$, we show that by making the boundary line dotted (\cdots). Then we shade the appropriate part of the grid. Because this is a "greater than" ($>$) problem, we shade above the dotted boundary line. See Graph 2 below.

Graph 2 of $\boldsymbol{y} \boldsymbol{>} \boldsymbol{x}+2$

Suppose we wanted to graph $x+y \leq 6$. We first transform the inequality so that y is alone on the left side: $y \leq 6-x$. We find a pair of points using a table of values, then graph the boundary line. Use the equation $y=6-x$ to find two pairs of points in the table of values. Graph the line that goes through points $(0,6)$ and $(2,4)$ from the table of values.

Table of Values

$y=\mathbf{6}-\boldsymbol{x}$	
\boldsymbol{x}	\boldsymbol{y}
0	6
2	4

Graph 3 of $y=6-x$

Now look at the inequality again. The symbol was \leq, so we leave the line solid and shade below the line.

$$
\text { Graph } 4 \text { of } x+y \leq 6
$$

Remember: Change the inequality sign whenever you multiply or divide the inequality by a negative number.

$$
\begin{array}{ll}
<\rightarrow> & \leq \rightarrow \geq \\
>\rightarrow< & \geq \rightarrow
\end{array}
$$

Inequality signs always change when multiplying or dividing by negative numbers.

Note:

- Greater than $(>)$ means to shade above or to the right of the line.
- Less than $(<)$ means to shade below or to the left of the line.

Test for Accuracy Before You Shade

You can test your graph for accuracy before you shade by choosing a point that satisfies the inequality. Choose a point that falls in the area you are about to shade. Do not choose a point on the boundary line.

For example, suppose you chose ($-2,3$).

$$
\begin{aligned}
-2+3 & \leq 6 \\
1 & \leq 6
\end{aligned}
$$

1. The ordered pair $(-2,3)$ satisfies the inequality.
2. The ordered pair $(-2,3)$ falls in the area about to be shaded.

Thus, the shaded area for the graph $x+y \leq 6$ is correct.

Graph 4 of $x+y \leq 6$ with Test Point

Practice

Graph each of the following inequalities on the graphs provided. Refer to pages 778-781 as needed.

1. $y \geq 2 x-3$

Graph of $y \geq 2 x-3$

2. $y<x+4$

Table of Values

$y<x+4$	
x	y

$$
\text { Graph of } y<x+4
$$

3. $y \leq 3 x+1$

Table of Values

$y \leq 3 x+1$	
x	y

Graph of $y \leq 3 x+1$

Is the point $(-3,7)$ part of the solution? \qquad

Graph of $\boldsymbol{y}>\boldsymbol{x}$

Is the point $(3,6)$ part of the solution? \qquad
5. $x+y<-5$

Table of Values

$x+y<-5$	
x	y

Graph of $x+y<-5$

6. $x-5 y \geq 10$

Table of Values

$x-5 y \geq 10$	
x	y

Graph of $\boldsymbol{x}-\mathbf{5 y} \geq 10$

7. $x-5 y \leq 10$

Table of Values

$x-\mathbf{5} y \leq 10$	
x	y

Graph of $x-5 y \leq 10$

Is the point $(0,0)$ part of the solution? \qquad
8. $y \leq-3$

Table of Values

$y \leq-3$	
x	y

Graph of $\boldsymbol{y} \leq-\mathbf{3}$

Graphing Multiple Inequalities

We can graph two or more inequalities on the same grid to find which solutions the two inequalities have in common or to find those solutions that work in one inequality or the other. The key words are "and" and "or." Let's see how these small, ordinary words affect our graphing.

Example 1

Graphically show the solutions for $2 x+3 y>6$ and $y \leq 2 x$.

Note: See how the inequality $2 x+3 y>6$ is transformed in the table of values into the equivalent inequality $y>2-\frac{2}{3} x$. Refer to pages 778-781 as needed.

Step 1. Find the boundary lines for the two inequalities and draw them. Remember to make the line for the first inequality dotted.

Table of Values

$\boldsymbol{y} \boldsymbol{>} \mathbf{2}-\frac{2}{3} \boldsymbol{x}$	
\boldsymbol{x}	\boldsymbol{y}
0	2
3	0

Table of Values

$y \leq \mathbf{2 x}$	
\boldsymbol{x}	\boldsymbol{y}
3	6
2	4

Graph Shows Boundary Lines of $2 x+3 y>6$ and $y \leq 2 x$

Graph of $2 x+3 y>6$ and $y \leq 2 x$ with Both Inequalities Shaded

Step 2. Since the $1^{\text {st }}$ inequality is greater than, shade above the dotted line.

Step 3. Shade the $2^{\text {nd }}$ inequality below the solid line using a different type shading or different color.

Step 4. Because this is an "and" problem, we want to have as our solution only the parts where both shadings appear at the same time (in other words, where the shadings overlap, just as in the Venn diagrams in a previous unit). We want to show only those solutions that are valid in both inequalities at the same time.

Step 5. The solution for $2 x+3 y>6$ and $y \leq 2 x$ is shown to the right.

Look at the finished graph above.
The point $(-1,1)$ is not in the shaded region. Therefore, the point $(-1,1)$ is not a solution of the intersection of $2 x+3 y>6$ and $y \leq 2 x$.

Example 2

Let's see how the graph of the solution would look if the problem had been $2 x+3 y>6$ or $y \leq 2 x$.

We follow the same steps from 1 and 2 of the previous example.
Step 1. Find the boundary lines for the two inequalities and draw them. Remember to make the line for the first inequality dotted.

Table of Values

$y>2-\frac{2}{3} \boldsymbol{x}$	
\boldsymbol{x}	\boldsymbol{y}
0	2
3	0

Table of Values

$y \leq \mathbf{2 x}$	
\boldsymbol{x}	\boldsymbol{y}
3	6
2	4

Graph Shows Boundary Lines of $2 x+3 y>6$ or $y \leq 2 x$

Step 2. Since the $1^{\text {st }}$ inequality is greater than, shade above the dotted line.

Graph of $2 x+3 y>6$ or $y \leq 2 x$ with $1^{\text {st }}$ Inequality Shaded

Now we change the process to fit the "or."
Step 3. Shade the $2^{\text {nd }}$ inequality below the solid line using the same shading as in step 2.

Graph of $2 x+3 y>6$ or $y \leq 2 x$ with $y \leq 2 x$ Shaded

Step 4. Because this is now an "or" problem, we want to have as our solution all the parts that are shaded. This shows that a solution to either inequality is acceptable.

Step 5. The solution for $2 x+3 y>6$ or $y \leq 2 x$ is shown below.
Final Solution for Graph of $2 x+3 y>6$ or $y \leq 2 x$

Now it's your turn to practice.

Practice

Graph the following inequalities on the graphs provided. Refer to pages 778-781 and 790-794 as needed.

1. $x \geq-2$ and $-x+y \geq 1$

Table of Values Table of Values

$x \geq-2$	
x	y

$-x+y \geq 1$	
x	y

Graph of $x \geq-2$ and $-x+y \geq 1$

2. $y<-3$ or $y \geq 2$

Table of Values Table of Values

$y<-3$	
x	y

$y \geq \mathbf{2}$	
\boldsymbol{x}	\boldsymbol{y}

Graph of $\boldsymbol{y}<-\mathbf{3}$ or $\boldsymbol{y} \geq 2$

3. $x+2 y>0$ and $x-y \leq 5$

Table of Values

$x+2 y>0$	
x	y

Table of Values

Is the point $(4,4)$ part of the solution? \qquad
4. $x+y>1$ or $x-y>1$

Table of Values

$x+y>1$	
x	y

Table of Values

$x-y>1$	
x	y

Graph of $x+y>1$ or $x-y>1$

5. $x+y>1$ and $x-y>1$

Table of Values

$x+y>1$	
x	y

Table of Values

$x-y>1$	
x	y

Graph of $x+y>1$ and $x-y>1$

Is the point $(0,0)$ part of the solution? \qquad
6. $y \leq 3$ or $x+y>4$

Table of Values

$\boldsymbol{y} \leq \mathbf{3}$	
\boldsymbol{x}	\boldsymbol{y}

Table of Values

$x+y>4$	
x	y

Graph of $y \leq 3$ and $x+y>4$

Practice

Match each definition with the correct term. Write the letter on the line provided.
\qquad

1. a monomial or sum of monomials; any rational expression with no variable in the denominator
2. numbers less than zero
3. a sentence that states one expression is greater than ($>$), greater than or equal to (\geq), less than $(<)$, less than or equal to (\leq), or not equal to (\neq) another expression
4. a group of two or more equations that are related to the same situation and share variables
5. a method used to solve a system of equations in which variables are replaced with known values or algebraic expressions
6. $a x^{2}+b x+c=0$, where a, b, and c are integers (not multiples of each other) and $a>0$
7. expressing a polynomial expression as the product of monomials and polynomials
A. factoring
B. inequality
C. negative numbers
D. polynomial
E. standard form (of a quadratic equation)
F. substitution
G. system of equations

Find the solution sets.

1. $(x+5)(x-7)=0$
$\{\ldots, \quad$, $\}$
2. $(3 x-2)(3 x-6)=0$
$\{ـ \quad, \quad\}$
3. $x(x-7)=0$
$\{\ldots, \ldots\}$
4. $x^{2}+x=42$
$\{\ldots, \quad$, $\}$
5. $x^{2}-10 x=-16$

Solve each of the following. Show all your work.
6. Max has a garden 4 feet longer than it is wide. If the area of his garden is 96 square feet, find the dimensions of Max's garden.

Answer: \qquad feet x \qquad feet
7. The product of two consecutive positive even integers (integers divisible by 2) is 440 . Find the integers.

Answer: \qquad and \qquad

Use the quadratic formula below to solve the following equations.

Check
your work
using a
calculator.

quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

8. $2 x^{2}-7 x-15=0$
9. $x^{2}+4 x-30=-9$
10. The sides of a rose garden are $(x+8)$ units and $(x-3)$ units. If the area of the garden is 12 square units, find the dimensions of the rose garden.

Answer: \qquad units x \qquad units

Solve algebraically, then graph each system of equations on the graphs provided. Refer to pages 748-752, 759-760, 778-781, and 790-794 as needed.
11. $2 x-y=6$
$x+y=9$

Table of Values Table of Values

$2 x-y=6$	
x	y

$x+y=9$	
x	y

Graph of $2 x-y=6$ and $x+y=9$

12. $x+y=7$ $3 x-4 y=7$

Table of Values Table of Values

$x+y=7$	
x	y

$3 x-4 y=7$	
x	y

Graph of $x+y=7$ and $3 x-4 y=7$

13. $2 x-4 y=8$
$x+4 y=10$

Table of Values Table of Values

$2 x-4 y=8$	
x	y

$$
\text { Graph of } 2 x-4 y=8 \text { and } x+4 y=10
$$

14. $3 x+2 y=8$

$$
y=-2
$$

Table of Values Table of Values

$3 x+2 y=8$	
x	y

$y=-2$	
x	y

Graph of $3 x+2 y=8$ and $y=-2$

15. $3 x+5 y=26$ $2 x-2 y=-20$

Table of Values Table of Values

$3 x+5 y=26$	
x	y

$2 x-2 y=-20$	
x	y

Graph of $3 x+5 y=26$ and $2 x-2 y=-20$

16. The sum of two numbers is 52 . The larger number is 2 more than 4 times the smaller number. Find the two numbers.

Answer: \qquad and \qquad
17. The band has 8 more than twice the number of students as the chorus. Together there are 119 students in both programs. How many are in each?

Answer: chorus $=$ \qquad and band = \qquad

Graph the following inequalities on the graphs provided.
18. $y>x-6$

Table of Values

$y>x-6$	
x	y

Graph of $\boldsymbol{y}>\boldsymbol{x}-6$

19. $8 x-4 y \leq 12$

Table of Values

$8 x-4 y \leq 12$	
x	y

Graph of $8 x-4 y \leq 12$

Is the point $(0,0)$ part of the solution? \qquad
20. $y \geq 4 x-3$ and $x+y<0$

Table of Values

$y \geq \mathbf{4 x}-\mathbf{3}$	
x	y

Table of Values

$x+y<0$	
x	y

Graph of $y \geq 4 x-3$ and $x+y<0$

21. $x+y>4$ or $y \geq x-2$
21. $x+y>4$ or $y \geq x-2$

Table of Values

$x+y>4$	
x	y

Table of Values

$y \geq x-2$	
x	y

Graph of $x+y>4$ or $y \geq x-2$

Is the point $(3,-6)$ part of the solution? \qquad

Appendices

Table of Squares and Approximate Square Roots

n	n^{2}	\sqrt{n}
1	1	1.000
2	4	1.414
3	9	1.732
4	16	2.000
5	25	2.236
6	36	2.449
7	49	2.646
8	64	2.828
9	81	3.000
10	100	3.162
11	121	3.317
12	144	3.464
13	169	3.606
14	196	3.742
15	225	3.873
16	256	4.000
17	289	4.123
18	324	4.243
19	361	4.359
20	400	4.472
21	441	4.583
22	484	4.690
23	529	4.796
24	576	4.899
25	625	5.00
26	676	5.099
27	729	5.196
28	784	5.292
29	841	5.385
30	900	5.477
31	961	5.568
32	1,024	5.657
33	1,089	5.745
34	1,156	5.831
35	1,225	5.916
36	1,296	6.000
37	1,369	6.083
38	1,444	6.164
39	1,521	6.245
40	1,600	6.325
41	1,681	6.403
42	1,764	6.481
43	1,849	6.557
44	1,936	6.633
45	2,025	6.708
46	2,116	6.782
47	2,209	6.856
48	2,304	6.928
49	2,401	7.000
50	2,500	7.071

n	n^{2}	\sqrt{n}
51	2,601	7.141
52	2,704	7.211
53	2,809	7.280
54	2,916	7.348
55	3,025	7.416
56	3,136	7.483
57	3,249	7.550
58	3,364	7.616
59	3,481	7.681
60	3,600	7.746
61	3,721	7.810
62	3,844	7.874
63	3,969	7.937
64	4,096	8.000
65	4,225	8.062
66	4,356	8.124
67	4,489	8.185
68	4,624	8.246
69	4,761	8.307
70	4,900	8.367
71	5,041	8.426
72	5,184	8.485
73	5,329	8.544
74	5,476	8.602
75	5,625	8.660
76	5,776	8.718
77	5,929	8.775
78	6,084	8.832
79	6,241	8.888
80	6,400	8.944
81	6,561	9.000
82	6,724	9.055
83	6,889	9.110
84	7,056	9.165
85	7,225	9.220
86	7,396	9.274
87	7,569	9.327
88	7,744	9.381
89	7,921	9.434
90	8,100	9.487
91	8,281	9.539
92	8,464	9.592
93	8,649	9.644
94	8,836	9.695
95	9,025	9.747
96	9,216	9.798
97	9,409	9.849
98	9,604	9.899
99	9,801	9.950
100	10,000	10.000

Appendix A

Mathematical Symbols

In the following formulas, n represents the number or sides.

- In a polygon, the sum of the measures of the interior angles is equal to $180(n-2)$.
- In a regular polygon, the measure of an interior angle is equal to $\frac{180(n-2)}{n}$.

FCAT Mathematics Reference Sheet

Pythagorean theorem: $a^{2}+b^{2}=c^{2}$	Distance between two points $\begin{aligned} & P_{1}\left(x_{1}, y_{1}\right) \text { and } P_{2}\left(x_{2}, y_{2}\right): \\ & \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \end{aligned}$
Slope-intercept form of an equation of a line: $y=m x+b$ where $m=$ slope and $b=$ the y-intercept.	Midpoint between two points $\begin{aligned} & P_{1}\left(x_{1}, y_{1}\right) \text { and } P_{2}\left(x_{2}, y_{2}\right): \\ & \quad\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right) \end{aligned}$
Distance, rate, time formula: $d=r t$ where $d=$ distance, $r=$ rate, $t=$ time.	Simple interest formula: $\mathrm{I}=p r t$ where $p=$ principal, $r=$ rate, $t=$ time.

Conversions

1 yard $=3$ feet $=36$ inches
1 mile $=1,760$ yards $=5,280$ feet
1 acre $=43,560$ square feet
1 hour $=60$ minutes
1 minute $=60$ seconds
1 liter $=1000$ milliliters $=1000$ cubic centimeters
1 meter $=100$ centimeters $=1000$ millimeters
1 kilometer $=1000$ meters
1 gram = 1000 milligrams
1 kilogram = 1000 gram

1 cup $=8$ fluid ounces
1 pint = 2 cups
1 quart = 2 pints
1 gallon $=4$ quarts

1 pound $=16$ ounces
1 ton $=2,000$ pounds

Metric numbers with four digits are presented without a comma (e.g., 9960 kilometers). For metric numbers greater than four digits, a space is used instead of a comma (e.g., 12500 liters).

							-			

Index

A

B

base (of an exponent) (algebraic)
... 191, 216
binomial .. 191, 200
braces \{ \}4, 13, 451, 456

C

E

element ..619, 627
element or member $4,12,451,456$
empty set or null set (ø) 4, 13, 451, 456
endpoint 502, 538
equation4, 54, 74, 83, 281, 323, 414,
............. 421, 502, 515, 619, 636, 706, 715
equiangular414, 429
equilateral ...414, 429
equivalent (forms of a number) $.74,112,281,290$
equivalent expressions 706, 753
estimation ...619, 652
even integer5, 13, 74, 156, 451, 457, 706, 803
exponent (exponential form)
...5, 23, 192, 216
expression5, 22, 75, 83, 193, 200,
.................... 281, 289, 362, 366, 451, 479, $.502,516,620,636$
F
factor \qquad 193, 216, 281, 290, 362, 366, 502, 516, 620, 677, 706, 716
factored form 193, 247, 706, 719 factoring 281, 290, 620, 666, 706, 720 finite set5, 12, 452, 456
FOIL method 193, 232, 362, 395, 620, 676, 707, 733
formula 75, 178, 502, 529, 707, 727
fraction5, 14, 193, 200, 282, 289,362, 371, 414, 420, 707, 732
function notation620, 636
function (of x)620, 627

G

graph 503, 511, 707, 749
graph of an equation 707, 748
graph of a number75, 159
graph of a point 503, 511
greatest common factor (GCF) 194, 248
grouping symbols5, 22, 194, 206

H

height (h) ...414, 439
horizontal 503, 511, 621, 642
hypotenuse503, 514

I

increase \qquad 75, 88
inequality $75,159,282,340,707,778$
infinite ... 707, 752
infinite set 5, 12, 452, 456
integers5, 13, 75, 83, 194, 249, 282, 289,
..... $415,425,452,457,503,558,707,726$
intersect 503, 586, 621, 667, 708, 749
intersection (\cap) 452, 463
intersection.. 708, 750
inverse operation 75, 124, 282, 327
irrational number .5, 14, 75, 161, 282, 289, 362, 371

L

```
least common denominator (LCD) 282, 304
least common multiple (LCM) ..... 282, 304
leg ................................................503,515
length (l) ........... 75, 121, 415, 426, 503, 515,
                                    708,727
like terms .......... 76, 112, 194, 206, 283, 327,
                                    363,372
line (\longleftrightarrow).......... 503, 511, 621, 641, 708, 748
linear equation .............................503, 558
linear function ..............................621, 641
line segment (-) ........................... 504, 538
```


M

maximum ... 621, 668
mean (or average)621, 662
measure (m) of an angle (\angle)76, 122
member or element 6, 12, 452, 456
midpoint (of a line segment)504, 538
minimum 283, 305, 621, 667
monomial 194, 200, 708, 720
multiples 6, 13
multiplicative identity 76, 108, 283, 330
multiplicative inverse (reciprocals) ... 76, 97
multiplicative property of -1
.76, 99, 283, 330
multiplicative property of zero76, 108

N

natural numbers (counting numbers)
........................... 6, 12, 194, 200, 452, 456
negative integers ...6, 28, 504, 558, 708, 728
negative numbers6, 13, 76, $83,283,341$, 504, 512, 708, 781
null set (\varnothing) or empty set 6, 13, 452, 456
number line6, 25, 76, 159, 504, 538
numerator 194, 200, 283, 289, 363, 371,
$415,420,504,552$

O
od
op
ord
ord
ori
P
parabola ..621, 666
parallel (I I) 504, 586, 708, 752
parallel lines 504, 586
pattern (relationship) 7, 14, 452, 456
perfect square363, 366
perimeter ((P)..................... 77, 121, 415, 434
perpendicular (\perp) 505, 586
perpendicular lines505, 586
pi (π) ...7, 14
point... $453,463,505,511,621,631,708,748$
polygon ...415, 429
polynomial 195, 200, 284, 289, 709, 720
positive integers7, 28, 453, 457, 709, 726
positive numbers $7,12,77,83,284,343$,
505, 512
power (of a number)
............................. 7, 23, 77, 88, 195, 200
prime factorization195, 246
prime number 195, 246
product 8, 40, 77, 88, 196, 200, 284, 290, $363,395,505,586,709,715$
proportion415, 420
Pythagorean theorem 505, 515

Q

quadratic equation $622,677,709,719$
quadratic formula
709, 731
quadratic function622, 666
quotient 8, 43, 77, 88, 196, 200, 284, 289

R

radical \qquad 363, 371, 505, 516
radical expression 363, 366, 505, 516
radical sign (\checkmark)
363, 366, 506, 516
radicand 506, 516
range 622, 627
ratio
$8,14,77,162,284,289,415,420$
rational expression 196, 200, 284, 289
rationalizing the denominator 364, 371rational number 8, 14, 77, 161, 284, 289,364, 371
real numbers 8, 14, 77, 161, 284, 289
reciprocals $78,97,284,328,506,586$
rectangle $78,121,709,727$
regular polygon 416, 429
relation 453, 479, 622, 627
repeating decimal 8, 14
right angle 506, 586
right triangle 506, 514
rise 506, 549
root 8, 23,506, 516
roots 622, 677
roster 453, 456
rounded number 416, 444, 622, 656
rule 453, 456
run 506, 549
S
scale factor 416, 429
set

\qquad
8, 12, 453, 456, 622, 627
side 78, 121, 416, 429, 507, 515
similar figures (\sim) 417, 429
simplest form (of a fraction) 285, 337
simplest form (of an expression) ... 196, 201simplest radical form $364,367,507,517$simplify a fraction 507, 543simplify an expression 8, 39, 78, 107,$285,290,364,377,709,732$
slope 507, 549, 622, 641
slope-intercept form 507, 568
solution
78, 84, 285, 327, 623, 677, 709, 715
solution set (\{ \}) 709, 716
solve9, 54, 78, 84, 417, 421, 623, 677,709, 715
square 78, 155
square (of a number) 9, 54, 78, 88,
507, 515
square root 364, 366, 507, 516
square units 79, 129
standard form (of a linear equation)508, 558

\qquad

T

table (or chart) 79, 148, 710, 748
term ... 196, 200, 285, 295, 364, 376, 710, 719
terminating decimal9, 14
trapezoid ...417, 433
triangle 79, 121, 417, 429, 508, 515
trinomial ... 196, 201

U

union (\cup) ...453, 462

V

value (of a variable) \qquad 9, 49, 417, 421, 508, 529, 623, 627, 710, 715 variable9, 49, 79, 83, 197, 200, 285, 289,364, 376, 417, 421, 508, 559, 623, 646, 710, 748
Venn diagram 9, 15, 453, 464, 711, 791 vertex 623, 667 vertical 508, 512, 623, 631, 711, 750 vertical line test623, 631

W

whole numbers $9,13,197,246,364,367$ width (w) $79,121,711,727$

X

x-axis 508, 511, 623, 642
x-coordinate 453, 479, 508, 542
x-intercept \qquad $508,559,623,642,711,749$

Y

```
\(y\)-axis ................................. 508, 511, 623, 642
\(y\)-coordinate .................... 453, 479, 508, 542
\(y\)-intercept ......... 508, 559, 624, 641, 711, 749
```


Z

```
zero product property ................... 197, 219,
624, 677, 711, 720
zero property of multiplication ..... 197, 219
zeros ...................................................624, 677
Y
*
                                    624,677
```


References

Bailey, Rhonda, et al. Glencoe Mathematics: Applications and Concepts. New York: McGraw-Hill Glencoe, 2004.

Boyd, Cindy J., et al. Glencoe Mathematics: Geometry. New York: McGrawHill Glencoe, 2004.

Brooks, Jane, et al., eds. Pacemaker Geometry, First Edition. Parsippany, NJ: Globe Fearon, 2003.

Collins, Williams, et al. Glencoe Algebra 1: Integration, Applications, and Connections. New York: McGraw-Hill Glencoe, 1998.

Cummins, Jerry, et al. Glencoe Algebra: Concepts and Applications. New York: McGraw-Hill Glencoe, 2004.

Cummins, Jerry, et al. Glencoe Geometry: Concepts and Applications. New York: McGraw-Hill Glencoe, 2005.

Florida Department of Education. Florida Course Descriptions. Tallahassee, FL: State of Florida, 2008.

Florida Department of Education. Florida Curriculum Framework: Mathematics. Tallahassee, FL: State of Florida, 1996.

Haenisch, Siegfried. AGS Publishing: Algebra. Circle Pines, MN: AGS Publishing, 2004.

Hirsch, Christian R., et al. Contemporary Mathematics in Context Course 1, Parts A and B. Columbus, New York: McGraw-Hill Glencoe, 2003.

Holiday, Berchie, et al. Glencoe Mathematics: Algebra 1. New York: McGrawHill, 2005.

Lappan, Glenda, et al. Frogs, Fleas, and Painted Cubes. White Plains, NY: McGraw-Hill Glencoe, 2004.

Lappan, Glenda, et al. Looking for Pythagoras: The Pythagorean Theorem. White Plains, NY: McGraw-Hill Glencoe, 2002.

Lappan, Glenda, et al. Samples and Populations: Data E Statistics. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.

Larson, Ron, et al. McDougal Littell: Algebra 1. Boston, MA: Holt McDougal, 2006.

Malloy, Carol, et al. Glencoe Pre-Algebra. New York: McGraw-Hill/Glencoe, 2005.

Muschla, Judith A. and Gary Robert Muschla. Math Starters! 5- to 10-Minute Activities That Make Kids Think, Grades 6-12. West Nyack, NY: The Center for Applied Research in Education, 1998.

Ripp, Eleanor, et al., eds. Pacemaker Algebra 1, Second Edition. Parsippany, NJ: Globe Fearon, 2001.

Ripp, Eleanor, et al., eds. Pacemaker Pre-Algebra, Second Edition. Parsippany, NJ: Globe Fearon, 2001.

Schultz, James E., et al. Holt Algebra 1. Austin, TX: Holt, Rinehart, and Winston, 2004.

Production Software

Adobe InDesign 3.0.1. San Jose, CA: Adobe Systems.
Adobe Photoshop 8.0. Mountain View, CA: Adobe Systems.
Macromedia Freehand 8.0. San Francisco: Macromedia.
Microsoft Office 98. Redmond, WA: Microsoft.

